METAL SEALS TECHNICAL CATALOG

DESIGN AND TESTING

Technetics Group engineers will partner with you to develop and test solutions for your toughest sealing applications whether you are in the design stage for a new project or trying to solve an existing problem.

DESIGN FOR ASSEMBLY

• 3D models of parts and assemblies produced in SolidWorks

ANSYS COMPUTATIONAL ANALYSIS

- Nonlinear mechanical behavior of metal, elastomer and composite materials
- Contact stress evaluation
- Creep relaxation in joint assemblies
- Multi-axial fatique
- Pressure and thermal effects

PHYSICAL TESTING

- Compression load characterization
- Helium leakage
- Nitrogen leakage up to 4000 psi
- Thermal cycling from -70 to 200°C
- Seal characterization at temperatures up to 1200°C
- Cyclic durability

QUALITY ASSURANCE

Technetics Group is committed to providing the highest quality metal seals and sealing systems. We provide seals for use in some of the most critical and demanding applications, including aerospace, nuclear power generation and automotive. Our quality system is monitored by our customers as well as third party auditing firms. We are certified to International Standards ISO9000:2000 and AS9100B. Our quality program also meets the requirements of 10CFR50 Appendix B. We welcome customer audits as well as source inspections.

Our staff includes multiple Certified Quality Engineers and Certified Quality Auditors, and we are committed to our Quality Policy of Total Customer Value throughout our supply chain.

We perform Liquid Penetrant Inspection and Radiographic Examination to Section V of the ASME Boiler & Pressure Vessel Code.

SEAL SELECTION GUIDE BY PERFORMANCE

	SEAL TYPE					
Application Information	0	O	0	C	5	1
	HELICOFLEX®	HELICOFLEX® DELTA	O-FLEX™	C-FLEX™	E-FLEX™ U-FLEX™*	Machined Seal*
Ultra High Vacuum	•		•	•	•	A
Low Pressure		•	A	A	A	A
High Pressure		•	A		•	A
Cryogenic Temperature		A	•	•	•	•
High Temperature		A	A	A	A	•
Spring Back	•	•	•	A		•
Shaped Seals	A	A	A	•	•	
Axial Sealing	A	-	•	A	•	•
QDS Compatible	A	A		•	•	•
Seating Load	High	Moderate	High Moderate	Moderate Low	Low	High Moderate
Leak Rate Approximation	Helium	Ultra- Helium	Helium Bubble	Bubble Low Bubble	Low Bubble	Helium

^{*} See Custom Seals Section

Application Legend	
Recommended - Excellent	
Recommended - Good	
Optional - Special Design	•
Not Recommended	

Leak Legend	Approximate Leak Rates per meter of circumference	Actual leak rate in service will depend on the following:
Ultra-Helium	≤ 1 x 10 ⁻¹¹ std.cc/sec He	Seal Load: Wall Thickness or Spring Load
Helium	≤ 1 x 10 ⁻⁹ std.cc/sec He	Surface Finish: Seal and Cavity
Bubble	≤ 1 x 10 ⁻⁴ std.cc/sec Air	Surface Treatment: Coating/Plating/Jacket Material
Low Bubble	≤ 25 cc/min @ 50 psig Nitrogen per inch of diameter	

SEAL SELECTION GUIDE BY MARKET/APPLICATION

AEROSPACE

Application	Section		
Fuel Nozzles	E-FLEX™, C-FLEX™, HELICOFLEX®		
Bleed Air	E-FLEX™, C-FLEX™, O-FLEX™		
Casing/Cowling	E-FLEX™		
Fuel Delivery	MS O-Rings, K-Port Seal		
V-Band Coupling	E-FLEX™, C-FLEX™, HELICOFLEX®, QDS®		
Compressor Discharge	E-FLEX™, HELICOFLEX®, C-FLEX™		
Electronic Enclosures	HELICOFLEX® DELTA, HELICOFLEX®, C-FLEX™		
Gear Box	HELICOFLEX®, C-FLEX™		
Rocket Engine & Turbo Pumps	E-FLEX™, HELICOFLEX®, C-FLEX™		
MS Standards	MS Orings, C-FLEX™		
MS 33649/AS 5202/	Boss Seal*, C-FLEX™		
AS 4395 Fluid Ports			

DEFENSE

Weapons	HELICOFLEX®, C-FLEX™, O-FLEX™
Missiles	HELICOFLEX® DELTA, HELICOFLEX®, C-FLEX™
Electronic Enclosures	HELICOFLEX® DELTA, HELICOFLEX®, C-FLEX™
MS 33649/AS 5202/	Boss Seal*, C-FLEX™
AS 4395 Fluid Ports	
Military Standards	MS O-Rings, C-FLEX™
Exhaust Systems	HELICOFLEX®, C-FLEX™, O-FLEX™
Fuel Delivery	HELICOFLEX®, C-FLEX™, HELICOFLEX® DELTA
Satellite Systems	HELICOFLEX® DELTA, HELICOFLEX®, C-FLEX™
Laser & RF Guidance Systems	HELICOFLEX® DELTA, HELICOFLEX®

OIL & GAS DOWNHOLE EQUIPMENT & UPSTREAM PRODUCTION

Drill Heads	HELICOFLEX®, O-FLEX™
Valves	HELICOFLEX®, C-FLEX™, O-FLEX™
Steam Chucks	HELICOFLEX®
Piping & Flanges	HELICOFLEX®, QDS®
Electronic Enclosures	HELICOFLEX® DELTA, HELICOFLEX®. C-FLEX™
& Packagings	
Flow Control	HELICOFLEX®, C-FLEX™
Pressure Gauges	HELICOFLEX®, C-FLEX™
Well Head Plug	HELICOFLEX®, C-FLEX™

OIL & GAS

REFINING & DOWNSTREAM FACTORIES

Heat Exchangers	HELICOFLEX®, O-FLEX™
Bonnet Seals	HELICOFLEX®, O-FLEX™, C-FLEX™
Valve Seats	HELICOFLEX®
Stem Seals	HELICOFLEX®, C-FLEX™
Piping & Flanges	HELICOFLEX®, QDS®
Process Sampling	HELICOFLEX®, C-FLEX™, O-FLEX™
Specialty Compressors	HELICOFLEX®, C-FLEX™, O-FLEX™

SEMICONDUCTOR

End Point Windows	HELICOFLEX® DELTA
Chamber Lids	HELICOFLEX® DELTA
Exhaust Lines	QDS®, HELICOFLEX® DELTA
Injectors	HELICOFLEX® DELTA, Machined Seal*
Bulkhead Connections	HELICOFLEX® DELTA

SEMICONDUCTOR

Gas Delivery System	Machined Seal*
Mass Flow Controllers	Machined Seal* HELICOFLEX® DELTA
Valve Manifold Box (VMB)	Machined Seal*
Gas Isolation Box (GIB)	Machined Seal*
Turbo Pumps	HELICOFLEX® DELTA

SEAL SELECTION GUIDE BY MARKET/APPLICATION

SEMICONDUCTOR

MATERIALS

Application	Section
Ampoules	HELICOFLEX® DELTA
Gas Canisters	HELICOFLEX® DELTA
Chemical Canisters	HELICOFLEX® DELTA

NATIONAL LABORATORIES

RF Waveguides	HELICOFLEX® DELTA
Particle Accelerators	HELICOFLEX® DELTA
Fusion Reactors	HELICOFLEX® DELTA
Klystron Tubes	HELICOFLEX® DELTA

NUCLEAR

Pressure Vessel	HELICOFLEX®	O-FLEX™	
Spent Fuel Casks	HELICOFLEX®	O-FLEX™	
Waste Heat	HELICOFLEX®	O-FLEX™	
Primary Loop	HELICOFLEX®	O-FLEX™	QDS®
Control Valves	HELICOFLEX®	O-FLEX™	
CRD / BWR	O-FLEX™		
Pressurizer	HELICOFLEX®	O-FLEX™	
,	0	O-FLEX™	

POWER GEN: INDUSTRIAL TURBINES

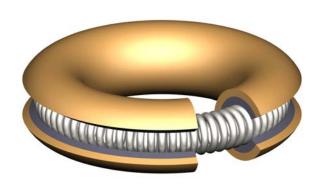
Fuel Nozzles	HELICOFLEX®, C-FLEX™, E-FLEX™
Cooling Steam	HELICOFLEX®, C-FLEX™, E-FLEX™
Casing	E-FLEX™, HELICOFLEX®
Fuel Delivery	MS Orings*, Boss Seal*
V-Band Coupling	U-FLEX™*, C-FLEX™, E-FLEX™, QDS®
Compressor Discharge	HELICOFLEX®, C-FLEX™, E-FLEX™
Electronic Enclosures	HELICOFLEX® DELTA, HELICOFLEX®, C-FLEX™
Gear Box	HELICOFLEX®, C-FLEX™
Rocket Engine & Turbo Pumps	E-FLEX™, HELICOFLEX®, C-FLEX™
MS Standards	MS Orings, C-FLEX™
Fuel Nozzle Locking Rings & Pl	ates Contact Us at sales@technetics.com

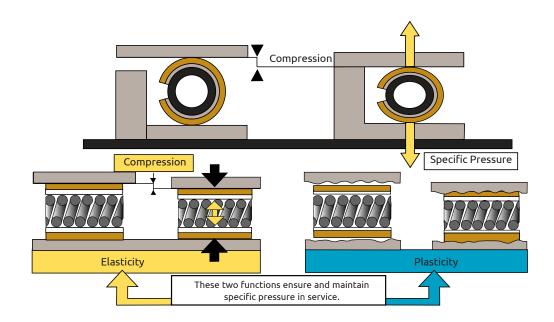
HIGH PERFORMANCE AUTOMOTIVE

Head Gasket Replacement	HELICOFLEX®	O-FLEX™		
Cooper Ring Replacement	HELICOFLEX®	O-FLEX™		
Head to Header Interface	U-FLEX™*	C-FLEX™	HELICOFLEX®	O-FLEX™
Exhaust Systems	U-FLEX™*	C-FLEX™	HELICOFLEX®	
Turbochargers Internal	U-FLEX™*	C-FLEX™	HELICOFLEX®	O-FLEX™
and External Interfaces				
Stack-up Tubular Springs	O-FLEX™	C-FLEX™	U-FLEX™*	E-FLEX™
High Pressure Fuel Injection	HELICOFLEX®	O-FLEX™	C-FLEX™	
Fuel Cell High Pressure Feed	HELICOFLEX®	O-FLEX™	C-FLEX™	
Fuel Cell Exhaust Path	C-FLEX™	U-FLEX™*		
Catalytic Converter Connection	ins	U-FLEX™*	C-FLEX™	

PLASTIC INJECTION MOLDING

Hot Runner Components	HELICOFLEX®	O-FLEX™	C-FLEX™
Manifold Plates	HELICOFLEX®	O-FLEX™	C-FLEX™
Extruder Plates	HELICOFLEX®	O-FLEX™	C-FLEX™
Filter Packs	HELICOFLEX®	O-FLEX™	C-FLEX™
Spinnerrettes	HELICOFLEX®	O-FLEX™	C-FLEX™
Screen Changers	HELICOFLEX®	O-FLEX™	C-FLEX™
Instrumentation Ports	HELICOFLEX®	O-FLEX™	C-FLEX™

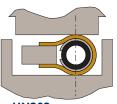


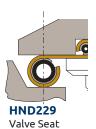

HELICOFLEX®

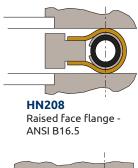
Spring Energized Seals

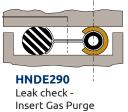
The sealing principle of the HELICOFLEX® family of seals is based upon the plastic deformation of a jacket of greater ductility than the flange materials. This occurs between the sealing face of a flange and an elastic core composed of a close-wound helical spring. The spring is selected to have a specific compression resistance. During compression, the resulting specific pressure forces the jacket to yield and fill the flange imperfections while ensuring positive contact with the flange sealing faces. Each coil of the helical spring acts independently and allows the seal to conform to surface irregularities on the flange surface. This combination of elasticity and plasticity makes the HELICOFLEX® seal the best overall performing seal in the industry.

CONFIGURATIONS


TYPICAL CONFIGURATIONS


Groove Assembly

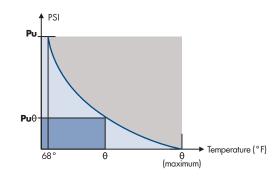



HN240 3 Face Compression

HN203 Tongue & Groove

CLASSIFICATION OF SEAL TYPE

Cross Section Type	HN single section HNR ground spring for precise load control (Beta Spring) HNV low load (HELICOFLEX® DELTA Seal) HND tandem HELICOFLEX® seals HNDE tandem HELICOFLEX® and elastomer seals note: "L" indicates internal limiter (ex: HLDE)									
Jacket/ Lining	1 = jā	icket on	ly			2 = jacket with inner lining				
Jacket Orientation		1	1	3	4	5	6	1	8	9
Orientation	0	1 O□¦	2	3 O¦	4 —	5	6 ○ - □¦	1_	! ➡○¦	9 00


EXAMPLE

HN	2	0	8
Cross Section	# Jackets/	Jacket	Section
Type	Lining	Orientation	Orientation

THE INTRINSIC POWER OF THE SEAL

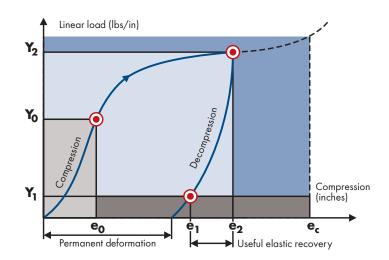
The intrinsic power of the HELICOFLEX® seal reflects its ability to maintain and hold system pressure for a given temperature at Y_2 and e_2 . This value is expressed as a specific pressure and is noted by the symbols Pu (room temperature) and Pu Θ (at operating temperature). The influence of temperature on Pu is shown in the graph below. The table on page 3 gives the values of Pu at 68°F (20°C), Pu Θ at a given temperature and the maximum temperature where Pu Θ = 0.

CHARACTERISTIC CURVE

The resilient characteristic of the HELICOFLEX® seal ensures useful elastic recovery during service. This elastic recovery permits the HELICOFLEX® seal to accommodate minor distortions in the flange assembly due to temperature and pressure cycling. For most sealing applications the $\rm Y_0$ value will occur early in the compression curve and the $\rm Y_1$ value will occur near the end of the decompression curve.

The compression and decompression cycle of the HELICOFLEX® seal is characterized by the gradual flattening of the compression curve. The decompression curve, which is distinct from the compression curve, is the result of a hysteresis effect and permanent deformation of the spring and jacket.

DEFINITION OF TERMS


Y₀ = load on the compression curve above which leak rate is at required level

Y₂ = load required to reach optimum compression e2

Y₁ = load on the decompression curve below which leak rate exceeds required level

e_a = optimum compression

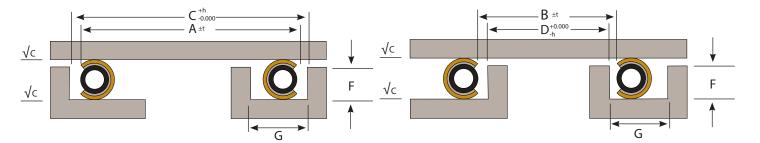
e_c = compression limit beyond which there is risk of damaging the spring

	HELIUM SEALING					BUBBLE SEALING						
												Max
Jacket	Cross	e ₂	e _c	Y ₂	Y ₁		Pu ⊖ 392°F	Y ₂	Y ₁		Pu O 392°F	Temp
Material	Section			lbs/inch	lbs/inch	PSI	PSI	lbs/inch	lbs/inch	PSI	PSI	°F
	0.063 0.075	0.024 0.028	0.028	857 914	114 114	7250 7540	N/A N/A	514 571	114 114	5075 5800	N/A N/A	302 302
	0.073	0.028	0.035	942	114	7685	N/A	600	114	5800	N/A	356
	0.098	0.028	0.035	999	114	7975	725	657	114	6090	725	428
Aluminum	0.118	0.031	0.039	1056	143	7975	1450	742	114	6525	1450	482
Atummum	0.138 0.157	0.031 0.035	0.039 0.043	1085 1142	143 143	7975 8700	2030 2465	799 857	114 114	6815 7250	2030 2465	482 536
	0.177	0.035	0.047	1199	143	8700	2900	914	114	7540	2900	536
	0.197	0.035	0.055	1256	171	9135	3190	971	143	7975	3190	572
	0.217 0.236	0.035	0.063 0.071	1313 1399	171 200	9425 9715	3480 3625	1028 1113	143 171	8265 8700	3480 3625	608 644
	0.276	0.039	0.087	1542	228	10150	4060	1171	200	9425	4060	644
	0.315	0.039	0.102	1656	286	10440	4640	1285	228	9860	4495	680
							Pu O 482°F				Pu O 482°F	
	0.063	0.020	0.024	1142	171	9425	N/A	857	171	5800	N/A	464
	0.075 0.087	0.024 0.024	0.028 0.031	1256 1313	171 200	9425 10150	N/A N/A	857 914	171 171	5800 5800	N/A 580	464 536
	0.087	0.024	0.031	1370	257	10130	1160	971	228	6525	725	536
	0.118	0.031	0.039	1485	286	12325	2030	1028	257	7250	1305	572
Silver	0.138	0.031	0.039	1599	286	13775	3190	1085	257	7975	1885	572
Silvei	0.157 0.177	0.031 0.031	0.043 0.043	1713 1827	314 343	15225 16675	3915 4495	1142 1256	286 286	8700 10150	2320 2755	662 698
	0.197	0.031	0.051	1941	343	18125	5220	1313	286	11600	3190	698
	0.217	0.031	0.055	2056	371	19575	5800	1428	343	13050	3625	752
	0.236 0.276	0.035 0.035	0.067 0.079	2284 2512	400 457	21750 23200	6815 7830	1542 1713	343 371	15950 18125	4350 5220	842 842
	0.276	0.035	0.079	2798	514	24650	8700	1999	400	20300	6090	932
							Pu O 572°F				Pu O 572°F	
	0.063	0.020	0.024	1485	228	7250	1450	1085	171	5075	725	662
	0.075	0.024	0.028	1599	286	7250	1595	1142	228	5075	870	662
Соррег,	0.087 0.098	0.024 0.028	0.031 0.035	1713 1827	343 400	7975 8700	1885 2465	1256 1313	286 343	5075 5800	1160 1450	680 716
Soft Iron,	0.118	0.028	0.039	1999	457	9425	2900	1428	400	5800	1740	716
Mild Steels	0.138	0.028	0.039	2227	457	10150	3335	1542	400	6525	2175	752
and	0.157 0.177	0.031 0.031	0.043	2455 2684	514 571	10150 11600	3915 4350	1656 1827	457 457	6525 6525	2465 2755	788 842
Annealed	0.197	0.031	0.051	2912	628	12325	4785	1884	514	7250	3045	842
Nickel	0.217	0.031	0.055	3141	685	13050	5220	2056	571	7250	3335	896
	0.236 0.276	0.035 0.035	0.067 0.079	3597 4225	799 914	13775 14500	5800 6525	2284 2627	571 628	7975 8700	3770 4205	968 968
	0.315	0.035	0.094	4911	1085	15950	7105	3026	742	9425	4640	1022
							Pu 0 662°F				Pu 0 662°F	
	0.063	0.016	0.020	1827	457	10150	1595	1142	343	5800	1015	716
	0.075 0.087	0.020 0.020	0.024 0.028	1999 2227	457 514	10440	2320 3045	1256 1313	343 400	6090 6380	1305 1740	716 788
	0.087	0.020	0.028	2512	571	11020 11890	3915	1542	400	6815	2320	842
Nickel,	0.118	0.024	0.035	2512	628	12615	4930	1713	457	7250	2900	896
Monel,	0.138	0.024	0.035	2798	685	13485	5800	1941	514	7830	3335	932
Tantalum	0.157 0.177	0.028 0.028	0.039 0.039	3312 4111	799 857	13920 15225	6525 7540	2170 2398	571 628	8265 8700	3915 4350	1022 1112
	0.197	0.028	0.043	4454	1028	15950	8265	2627	628	9425	4785	1202
	0.217	0.028	0.051	4625	1142	16675	8990	2855	685	9715	5365	1202
	0.236 0.276	0.031 0.031	0.063 0.071	N/A N/A	N/A N/A	N/A N/A	N/A N/A	3198 3712	742 857	10440 11310	5945 6525	1202 1202
	0.315	0.031	0.083	N/A	N/A	N/A	N/A	4168	914	12035	7250	1202
							Pu 0 752°F				Pu 0 752°F	
	0.063	0.016	0.020	1999	571	13050	3625	1713	457	6815	870	788
	0.075 0.087	0.020 0.020	0.024 0.028	2284 2570	571 628	13195 13340	3915 4205	1827 1999	457 514	7250 7540	1160 1595	788 896
	0.098	0.024	0.031	2855	685	14065	4640	2170	571	8265	2175	932
Stainless	0.118 0.138	0.024	0.035	3283	742	14500	5220	2427	628	8990	2900	932
	11 1 4 52	0.024	0.035	3769	857	15080 15515	5655 6090	2684 2969	742 857	9715 10440	3625 4350	1022 1112
Steel, Inconel		0.028	0.039	4/X3	9/1			L J U J				
Steel, Inconel, Titanium	0.157 0.177	0.028 0.028	0.039 0.039	4283 4711	971 1256	15950	6525	3198	1028	11165	4930	1202
Inconel,	0.157 0.177 0.197	0.028 0.028	0.039 0.043	4711 N/A	1256 N/A	15950 N/A	6525 N/A	3426	1028 1085	11165 11890	4930 5365	1202 1292
Inconel,	0.157 0.177 0.197 0.217	0.028 0.028 0.028	0.039 0.043 0.051	4711 N/A N/A	1256 N/A N/A	15950 N/A N/A	6525 N/A N/A	3426 3712	1028 1085 1142	11165 11890 12615	4930 5365 6090	1202 1292 1292
Inconel,	0.157 0.177 0.197	0.028 0.028	0.039 0.043	4711 N/A	1256 N/A	15950 N/A	6525 N/A	3426	1028 1085	11165 11890	4930 5365	1202 1292

LOAD CALCULATIONS

DEFINITION OF CHARACTERISTIC VALUES

Dj	Mean reaction diameter	of the seal. (For	a double se	ection seal, $Dj = Dj_1 + Dj_2$	 inches
Y_2	Linear load correspondir	ng to e ₂ compres	sion		 lbs/inch
Y ₁	Linear load on the seal to	o maintain sealir	ig in service	at low pressure (=Ym1)	 lbs/inch
Pu	Intrinsic power of the se	al under pressur	e at 68°F (2	0°C) when the reaction force	 PSI
	of the seal is maintained	at Y ₂ , regardles	s of the ope	erating conditions.	
Pu _⊖	Value of Pu at temperat	иге Ө			 PSI
Р	Operating or proof press	sure			 PSI
	Note: if $\frac{P}{Pu \text{ or } Pu\theta} > 1$, the This ratio must never exp		e seal must	be modified	
Y _{m2}	Linear tightening load or under pressure.	n the seal at roo	m temperat	ure to maintain sealing	 lbs/inch
	$Y_{m2} = Y_2 - \frac{P}{P_{11}}$				
Y _{m20}	Value of Y _{m2} at temperat	:ure Ө. Y _{m2} = Y	P PuA		 lbs/inch
Et	Young's modulus of bolt	 PSI			
Et _s	Young's modulus of bolt	: material at ope	rating temp	erature	 PSI
LOAD	CALCULATIONS				
Fj	Total tightening load to Fj = π x Dj x Y ₂	compress the se	al to the op	erating point (Y ₂ ; e ₂)	 _lbs
F _F	Total hydrostatic end for	rce $F_{F} = \frac{\pi}{4} Dj_{1}^{2} x$	P (Dj ₁ = Dj i	n case of a single section seal)	 lbs
Fm	Minimum total load to b	e maintained on	the seal in	service to preserve sealing,	 lbs
	i.e. Fm = п Dj Y _m where:	Y _m = the greater	of the two	values: Y _{m1} or Y _{m20}	
	(see note 1 below)				
Fs	Total load to be applied	on the bolts to r	naintain sea	ling in service	 lbs
	$Fs = F_{E} + F_{m}$				
Fs*	Increased value of Fs to	compensate for	Young's mo	dulus at temperature	lbs
	Fs* = Fs Et / Et _s	,	3		
F _B		If Fs* > Fj	then	Fb = Fs*	lbs
D		If Fj > Fs*	then	Fb = Fj	


<u>NOTE</u> 1: wherever the working pressure is high and/or seal diameter is big, to such an extent that $P \cdot Dj \ge 32 \ Y_m$, in order to remain on the safe side, whatever the inaccuracy on the tightening load may be, it is recommended to take the Fj value in lieu of F_m for the calculation of Fs so that Fs = $F_F + Fj$.

NOTE 2: this information is provided as a reference only.

INTERNAL PRESSURE: SEAL TYPE HN200

EXTERNAL PRESSURE: SEAL TYPE HN220

SEAL AND GROOVE SIZING CALCULATIONS

The equations below can be used for basic groove calculations. Applications that have significant thermal expansion may require additional clearance. Please contact Applications Engineering for design assistance.

Determining Seal Diameter:

 $\begin{array}{ll} \underline{\textbf{Internal}} & \underline{\textbf{External}} \\ A = C - X & B = D + X \end{array}$

A = C-X B = D + X Tolerancing: See chart

C = A + X D = B - X D = Groove Outer Diameter

D = B - X D = Groove Inner Diameter

X = Diametral Clearance (see table)

Groove Finish \sqrt{C} : See groove dimensioning chart on page 6

FLATNESS

Seal Diameter Range	Amplitude	Tangential Slope	Radial Slope
0.350 to 20.000	0.008	1:1000	1:100
20.001 to 80.000	0.016	2:1000	2:100

SEAL/GROOVE TOLERANCES

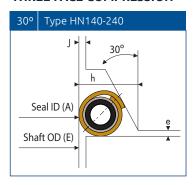
	Pressure < 300	psi (20 bar)	Pressure ≥ 300 psi (20 bar)				
Seal Diameter Range	Seal tolerance t	Groove tolernace h	Seal tolerance t	Groove tolerance h			
0.350 to 2.000	0.005	0.005	0.004	0.004			
2.001 to 12.000	0.010	0.010	0.004	0.004			
12.001 to 25.000	0.010	0.010	0.006	0.006			
25.001 to 48.000	0.015	0.015	0.008	0.008			
48.001 to 72.000	0.020	0.015	0.010	0.008			
> 72.000	Contact Us at sales@technetics.com						

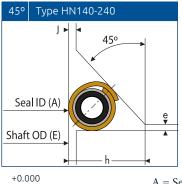
Dimensions in inches

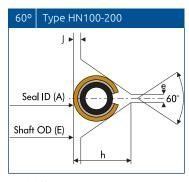
SHAPED SEALS

Groove design: Contact us for assistance in designing non-circular grooves

Groove finish: Most applications will require a finish of 16-32 RMS (0.4 to 0.8 Ra µm). All machining & polishing marks must follow seal circumferance


Min. Seal Radius: The minimum seal bending radius is six times the seal cross section (CS).


Seating Load: The load (Y2) to seat the seal is approximately 30% higher due to a slightly stiffer spring design.



		SEAL		Pressure < 300psi	Pressure ≥ 300psi	GROOVE		
Jacket Material	Free Height	Installation Compression e2	Seal Diameter Range	Diametral Clearance X	Diametral Clearance X	Groove Depth F	Groove Width (Min.) G	Groove Finish RMS
, 15561161	0.063 0.075 0.087	0.024 0.028 0.028	0.500 to 4.000 0.625 to 6.000 0.750 to 10.000	0.024 0.028 0.028	0.012 0.012 0.012	0.039 +/- 0.003 0.047 +/- 0.003 0.059 +/- 0.003	0.111 0.131 0.143	TUTIS
Aluminum	0.098 0.118 0.138	0.028 0.031 0.031	0.875 to 15.000 1.000 to 20.000 1.250 to 25.000	0.028 0.031 0.031	0.012 0.012 0.020	0.070 +/- 0.003 0.087 +/- 0.004 0.107 +/- 0.004	0.154 0.180 0.200	32-125
	0.157 0.177 0.197	0.035 0.035 0.035	1.750 to 30.000 2.000 to 40.000 3.000 to 50.000	0.035 0.035 0.035	0.020 0.020 0.020	0.122 +/- 0.004 0.142 +/- 0.004 0.162 +/- 0.004	0.227 0.247 0.267	Contact us at sales@technetics.com for recommendation
	0.217 0.236 0.276	0.035 0.039 0.039	4.000 to 50.000 + 5.000 to 50.000 + 6.000 to 50.000 +	0.035 0.039 0.039	0.020 0.020 0.028	0.182 +/- 0.004 0.197 +/- 0.005 0.237 +/- 0.005	0.287 0.314 0.354	
	0.315 0.063 0.075	0.039 0.020 0.024	8.000 to 50.000 + 0.500 to 4.000 0.625 to 6.000	0.039 0.020 0.024	0.028 0.012 0.012	0.276 +/- 0.005 0.043 +/- 0.002 0.051 +/- 0.003	0.393 0.103 0.123	
	0.087 0.098 0.118	0.024 0.028 0.031	0.750 to 10.000 0.875 to 15.000 1.000 to 20.000	0.024 0.028 0.031	0.012 0.012 0.012	0.063 +/- 0.003 0.070 +/- 0.003 0.087 +/- 0.004	0.135 0.154 0.180	63-125
Silver	0.138 0.157 0.177	0.031 0.031 0.031	1.250 to 25.000 1.750 to 30.000 2.000 to 40.000	0.031 0.031 0.031	0.020 0.020 0.020	0.107 +/- 0.004 0.126 +/- 0.004 0.146 +/- 0.004	0.200 0.219 0.239	Contact us at sales@technetics.com for recommendation
	0.197 0.217 0.236	0.031 0.031 0.035	3.000 to 50.000 4.000 to 50.000 + 5.000 to 50.000 + 6.000 to 50.000 +	0.031 0.031 0.035	0.020 0.020 0.020	0.166 +/- 0.004 0.186 +/- 0.004 0.201 +/- 0.004	0.259 0.279 0.306	, or recommendation
	0.276 0.315 0.063	0.035 0.035 0.020	8.000 to 50.000 + 0.500 to 4.000	0.035 0.035 0.020	0.028 0.028 0.012	0.241 +/- 0.004 0.280 +/- 0.004 0.043 +/- 0.002	0.346 0.385 0.103	
Copper,	0.075 0.087 0.098	0.024 0.024 0.028	0.625 to 6.000 0.750 to 10.000 0.875 to 15.000	0.024 0.024 0.028	0.012 0.012 0.012	0.051 +/- 0.003 0.063 +/- 0.003 0.070 +/- 0.003	0.123 0.135 0.154	63-125
Soft Iron, Mild Steels and	0.118 0.138 0.157	0.028 0.028 0.031	1.000 to 20.000 1.250 to 25.000 1.750 to 30.000	0.028 0.028 0.031	0.012 0.020 0.020	0.090 +/- 0.003 0.110 +/- 0.003 0.126 +/- 0.004	0.174 0.194 0.219	Contact us at
Annealed Nickel	0.177 0.197 0.217	0.031 0.031 0.031	2.000 to 40.000 3.000 to 50.000 4.000 to 50.000 +	0.031 0.031 0.031	0.020 0.020 0.020	0.146 +/- 0.004 0.166 +/- 0.004 0.186 +/- 0.004	0.239 0.259 0.279	sales@technetics.com for recommendation
	0.236 0.276 0.315	0.035 0.035 0.035	5.000 to 50.000 + 6.000 to 50.000 + 8.000 to 50.000 +	0.035 0.035 0.035	0.020 0.028 0.028	0.201 +/- 0.004 0.241 +/- 0.004 0.280 +/- 0.004	0.306 0.346 0.385	
	0.063 0.075 0.087	0.016 0.020 0.020	0.500 to 4.000 0.625 to 6.000 0.750 to 10.000	0.016 0.020 0.020	0.012 0.012 0.012	0.047 +/- 0.002 0.055 +/- 0.002 0.067 +/- 0.002	0.095 0.115 0.127	22.62
Nickel, Monel,	0.098 0.118 0.138 0.157	0.024 0.024 0.024 0.028	0.875 to 15.000 1.000 to 20.000 1.250 to 25.000	0.024 0.024 0.024	0.012 0.012 0.020	0.074 +/- 0.003 0.094 +/- 0.003 0.114 +/- 0.003 0.129 +/- 0.003	0.146 0.166 0.186	32-63 Contact us at
Tantalum	0.137 0.177 0.197 0.217	0.028 0.028	1.750 to 30.000 2.000 to 40.000 3.000 to 50.000	0.028 0.028 0.028 0.028	0.020 0.020 0.020	0.149 +/- 0.003 0.169 +/- 0.003	0.213 0.233 0.253	sales@technetics.com for recommendation
	0.217 0.236 0.276 0.315	0.028 0.031 0.031 0.031	4.000 to 50.000 + 5.000 to 50.000 + 6.000 to 50.000 + 8.000 to 50.000 +	0.028 0.031 0.031 0.031	0.020 0.020 0.028 0.028	0.189 +/- 0.003 0.205 +/- 0.004 0.245 +/- 0.004 0.284 +/- 0.004	0.273 0.298 0.338 0.377	
	0.063 0.075 0.087	0.031 0.016 0.020 0.020	0.500 to 30.000 + 0.500 to 4.000 0.625 to 6.000 0.750 to 10.000	0.016 0.020 0.020	0.012 0.012 0.012 0.012	0.047 +/- 0.002 0.055 +/- 0.002 0.067 +/- 0.002	0.095 0.115 0.127	
Stainless	0.098 0.118 0.138	0.024 0.024 0.024	0.875 to 15.000 1.000 to 20.000 1.250 to 25.000	0.024 0.024 0.024	0.012 0.012 0.012 0.020	0.007 +/- 0.002 0.074 +/- 0.003 0.094 +/- 0.003 0.114 +/- 0.003	0.146 0.166 0.186	32-63
Steel, Inconel, Titanium	0.157 0.177 0.197	0.028 0.028 0.028	1.750 to 30.000 2.000 to 40.000 3.000 to 50.000	0.028 0.028 0.028	0.020 0.020 0.020 0.020	0.114 +/- 0.003 0.129 +/- 0.003 0.149 +/- 0.003 0.169 +/- 0.003	0.213 0.233 0.253	Contact us at sales@technetics.com for recommendation
	0.217 0.236 0.276	0.028 0.031 0.031	4.000 to 50.000 + 5.000 to 50.000 + 6.000 to 50.000 +	0.028 0.031 0.031	0.020 0.020 0.020 0.028	0.189 +/- 0.003 0.205 +/- 0.004 0.245 +/- 0.004	0.273 0.298 0.338	
	0.315	0.031	8.000 to 50.000 +	0.031	0.028	0.284 +/- 0.004	0.377	

THREE FACE COMPRESSION

E = Shaft OD

-0.002

A = Seal ID +0.002 -0.000

CALCULATIONS							
Axial Load (Ya)	= K • Y ₂						
Shaft OD (E)	= Seal ID (A)						
Clearance (J)	< CS / 10						
Axial Compression (e)	= a • e ₂						
Cavity Finish	< 32 RMS						

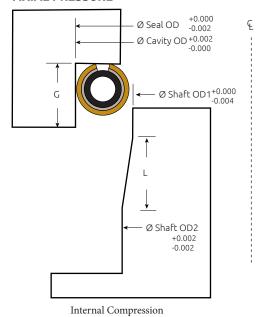
COEFFICIENT VALUES									
Coefficient	30°	45°	60°						
а	2.0	1.4	1.15						
K	0.9	1.2	1.4						

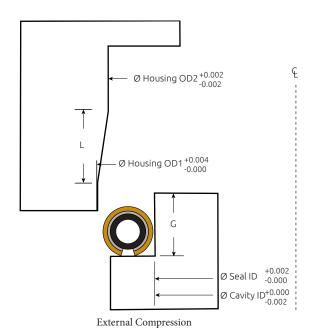
TARGET SEALING CRITERIA

The ultimate leak rate of a joint is a function of the seal design, flange design, bolting, surface finish and other factors. HELICOFLEX® seals are designed to provide two levels of service: Helium Sealing or Bubble Sealing.

Helium Sealing: These HELICOFLEX® seals are designed with a target Helium leak rate not to exceed $1x10^{-9}$ cc/sec.atm under a ΔP of 1 atmosphere. The ultimate leak rate will depend on the factors listed above.

Bubble Sealing: These HELICOFLEX® seals are designed with a target air leak rate not to exceed $1x10^{-4}$ cc/sec.atm under a ΔP of 1 atmosphere.


"h" VALUES


Seal Cross Section	30	o	45	o	60°		
CS	Aluminum Jacket	Other Jackets	Aluminum Jacket	Other Jackets	Aluminum Jacket	Other Jackets	
0.102	0.130	0.126	0.163	0.157	0.126	0.134	
0.126	0.157	0.157	0.199	0.199	0.157	0.165	
0.165	0.207	0.207	0.260	0.260	0.213	0.220	
0.205	0.260	0.260	0.327	0.327	0.272	0.280	
0.252	0.321	0.321	0.402	0.402	0.339	0.346	

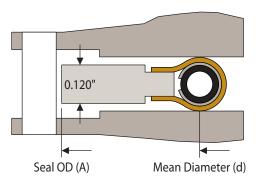
AXIAL PRESSURE

SEAL CONFIGURATION = HN110 OR HN210

Aluminum			Silver			Copper			Nickel		
Cross Section CS	e ₃	Ya lbs/in									
0.063	0.012	109	0.063	0.010	170	0.067	0.008	217	0.063	0.008	228
0.102	0.014	137	0.102	0.012	195	0.092	0.010	251	0.102	0.010	308
0.118	0.016	154	0.122	0.014	206	0.128	0.012	286	0.126	0.012	343
0.157	0.020	183	0.165	0.018	228	0.171	0.016	332	0.165	0.016	434
0.200	0.020	206	0.205	0.018	263	0.210	0.016	377	0.205	0.016	525
0.260	0.024	235	0.244	0.020	308	0.250	0.018	457	0.252	0.018	640

CALCULATIONS		
	Internal Compression	External Compression
G min = $CS + e_3 + 0.008$	Seal OD = Cavity OD	Seal ID = Cavity ID
L min = $10 \times e_3$	Seal ID = Seal OD - 2 CS	Seal OD = Seal ID + 2 CS
Cavity Finish: ≤ 32RMS	Shaft OD1 ≤ Seal ID	Housing OD1 ≥ Seal OD
Ya = Axial Seating Load	Shaft OD2 = Seal ID + 2e ₃	Housing OD2 = SealOD - 2e ₃

SEAL TYPE HN208


Jacket	Availability	Cross Section (inches)	Seating Load (lbs/in)*	Recommended Flange Finish (RMS)
Aluminum	Standard	0.160	1150	63 - 125
Silver	Standard	0.160	1725	63 - 125
Copper	Standard	0.155	2250	63 - 125
Soft Iron	Optional	0.155	2250	32 - 63
Nickel	Standard	0.150	2800	32 - 63
Monel	Optional	0.150	2800	32 - 63
Hastelloy C	Optional	0.150	3800	32 - 63
Stainless Steel	Standard	0.150	3800	32 - 63
Alloy 600	Optional	0.150	3800	32 - 63
Alloy X750	Optional	0.150	4000	32 - 63
Titanium	Optional	0.150	4000	32 - 63

Dimensions in inches

*NOTE: Seating load only! Does not allow for hydrostatic end force.

ANSI B16.5 RAISED FACE FLANGE

The HELICOFLEX® HN208 is ideally suited for standard raised face flanges. The resilient nature of the seal allows it to compensate for the extremes of high temperature and pressure where traditional spiral wounds and double jacketed seals fail. The jacket and spring combination can be modified to meet most requirements of temperature and pressure. In addition, a large selection of jacket materials ensures chemical compatibility in corrosive and caustic media.

SEAL DIM	IENSIONS							
Nominal	Mean				Seal OD (A)		
Diameter	Diameter (d)	150lb	300lb	400lb	600lb	900lb	1500lb	2500lb
1/2	0.827	1.874	2.126	2.126	2.126	2.500	2.500	2.752
3/4	1.102	2.252	2.626	2.626	2.626	2.752	2.752	3.000
1	1.417	2.626	2.874	2.874	2.874	3.122	3.122	3.374
1-1/4	1.890	3.000	3.252	3.252	3.252	3.500	3.500	4.126
1-1/2	2.283	3.374	3.752	3.752	3.752	3.874	3.874	4.626
2	2.913	4.126	4.374	4.374	4.374	5.626	5.626	5.752
2-1/2	3.425	4.874	5.126	5.126	5.126	6.500	6.500	6.626
3	4.173	5.374	5.874	5.874	5.874	6.626	6.874	7.752
3-1/2	4.685	6.374	6.500	6.500	6.374	N/A	N/A	N/A
4	5.256	6.874	7.126	7.000	7.626	8.126	8.252	9.252
5	6.378	7.752	8.500	8.374	9.500	9.752	10.000	11.000
6	7.500	8.752	9.874	9.752	10.500	11.413	11.126	12.500
8	9.567	10.996	12.126	12.000	12.626	14.126	13.874	15.252
10	11.693	13.374	14.252	14.126	15.752	17.126	17.126	18.760
12	13.858	16.126	16.626	16.500	18.000	19.626	20.500	21.626
14	15.098	17.752	19.126	19.000	19.374	20.500	22.752	N/A
16	17.205	20.252	21.252	21.126	22.252	22.626	25.252	N/A
18	19.567	21.626	23.500	23.374	24.126	25.126	27.752	N/A
20	21.575	23.874	25.752	25.500	26.874	27.500	29.752	N/A
24	25.728	28.252	30.500	30.252	31.126	32.996	35.500	N/A

Dimensions in inches

NOTE: Contact us at sales@technetics.com for other available sizes and materials

sales@technetics.com technetics.com

CALCULATIONS ACCORDING TO CODES

	A.S.M.E. Section VIII Division I	Technetics Group
Operating load	Wm2 = п.b.G.y	Fj = п.Dj.Y ₂
Hydrostatic force	$H = \pi$. $\frac{G^2}{4}$.P	$F_F = \Pi. \frac{(Dj)^2}{4} .P$
Minimum service load	Н _P = 2.b.п.G.m.P	Fm= π .Dj.Ym $Ym = \frac{Ym_1 = Y_1}{Ym_2 = Y_2} \frac{P}{Pu \Theta}$ Use the greater of the two
Minimum tightening load to apply	$W = (1) W_{m2}$ $(2) H + Hp = W_{m1}$	$F_B = (1) Fj$ $(2) F_F + F_m = Fs$
on bolts	Use the greater of the two (1) or (2)	Use the greater of the two (1) or (2)

EQUIVALENT SYMBOLS

	A.S.M.E. Section VIII Division I
Operating load	$W_{m2} = Fj$ $b = 1$ $G = Dj$ $Y = Y_{2}$ $W_{m2} = \pi.Dj.Y_{2}$
Hydrostatic force	$H = F_F$ $G = Dj$ Ψ $H = \pi. \frac{(Dj)^2}{4} \cdot P$
Minimum service load	$H_{p} = F_{m}$ $b = 1$ $G = Dj$ $2.m.P = Y_{m}$ $M = \frac{YM}{2.P}$ $H_{p} = \pi.Dj.Ym$
Minimum bolt load	$W = F_B$ $W = (1) Fj$ $(2) F_F + F_m = Fs$ Use the greater of the two (1) or (2)

NOTE: Due to its circular section, the HELICOFLEX® seal exhibits a "line" load instead of an "area load" typical of traditional gaskets. As a result, "m", "b" and "y" factors are not pertinent when applied to the HELICOFLEX® seal. These equivalent equations were developed to assist flange designers with their calculations.

an En**Pro** Industries company

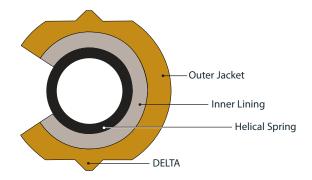
APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279 E-Mail: sales@technetics.com

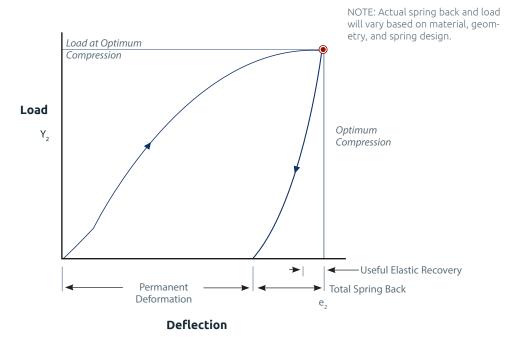
COMPANY:				PHONE:			
CONTACT:				FAX:			
ADDRESS:				E-MAIL:			
				DATE:			
APPLICATION: (pleas	e attach custo	mer draw	ing / sketch)				
Brief Description:			,			·	
Annual quantities:				RFQ Quantities:			
Is This a New Design?		o Yes	o No	— Are Modifications Possibl	.e?	o Yes	o No
Drawing or Sketch Attache	d?	o Yes	o No	What is the Seal Type?		o Shaped	o Circular
SERVICE CONDITION	NS:						
Media:				Life Expectancy:	1		,
Working Temperature:				Max/Proof Pressure:		@ Temp). =
Working Pressure:				Max Temperature:		— @ Pressur	e =
Pressure Direction: (Internal/External/Axial)				Target Sealing Level:	Helium:		Std.cc/sec
Pressure Cycles:					Flow Rate:		cc/minute
Temperature Cycles:					Other:		
FLANGE DETAILS:	(Please Pro	vide Draw	ving)				
Amount of Flange Moveme	ent in Service: (Ir	iches)	Radia	al: A:	xial:	#Cycl	es:
Material:				Thickn	ess:		
o Groove / Counter Bore:	P	lease list o	dimensions in C	roove Details section		,	
o ANSI Raised Face	Size:		# Ratin	g: Fa	ce Surface Finis	sh:	(RMS)
o Flange(s) with Clamping	System: (ISO,K	F, etc)		Standard:	Siz	ze:	
o Other:	Description:				(Please Pro	vide Drawing)	l
GROOVE DETAILS:	(Please Provid	de Drawin	g)				
Type (Rectangular, Dovetai	l, etc.):					,	
Outer Diameter:		Tolerar	nce:	Depth:	Tolerance:		
Inner Diameter:		Tolerar	nce:	Finish (RMS)	—— Type:		_
				Finish Type: lathe (circular), endm		, other	_
BOLTING DETAILS:	(Please Provi	do Deswis	۵)				
Size:	(Flease Flovi	Je Diawiii	9)	Type / Grade:		'	
	_						
Number:	_Bolt Circle			Tapped / Through:			
OTHER:				<u> </u>	,		
Special coating / plating spe	ecification:		<u> </u>		'		
Special quality / inspection							
Other:	oposinoations.						
I							

HELICOFLEX® DELTA

Spring Energized Metal Seals



SEALING CONCEPT


The HELICOFLEX® DELTA seal is a member of the HELICOFLEX® family of spring energized seals. The sealing principle of the HELICOFLEX® family of seals is based upon the plastic deformation of a jacket that has greater ductility than the flange materials. This occurs between the sealing face of a flange and an elastic core composed of a close-wound helical spring. The spring is selected to have a specific compression resistance. During compression, the resulting specific pressure forces the jacket to yield and ensures positive contact with the flange sealing faces. Each coil of the helical spring acts independently and allows the seal to conform to irregularities on the flange surface.

The HELICOFLEX® DELTA seal is unique in that it uses two small ridges or "DELTAS" on the face of the seal. The load required to plastically deform the jacket material is greatly reduced by concentrating the compression load on the DELTAS. The resulting high contact stress in the seal track makes the HELICOFLEX® DELTA seal an excellent choice for ultra-high vacuum applications that require ultra-low Helium leak rates. There is typically no risk of damaging the flange sealing surfaces as long as the minimum hardness requirements are maintained.

TYPICAL LOAD DEFLECTION CURVE

LEAK PERFORMANCE

HELICOFLEX® DELTA seals can provide Helium leak rate performance of $< 1 \times 10^{-11}$ std.cc/sec (per meter of seal circumference). Actual leak rate will depend on seal jacket, cavity/flange finish, bolting, hardware robustness and cleanliness level.

CLASSIFICATION OF SEAL TYPE

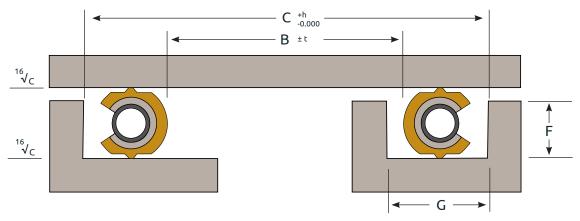
Cross Section Type	HNV	HNV low load (HELICOFLEX® DELTA Seal)									
Jacket/ Lining	1 = ja	cket or	ıly			2 = jacket with inner lining					
Jacket Orientation	0	1 —	2	3	4 —	5 —	6 —	7	8 —	9	
Section Orientation	0		2 —	3 	4	5 \\ _ \ _ \ \ \ \ \ \ \ \ \ \ \ \ \	6 ○	7 —	8 □→○¦	9	

EXAMPLE

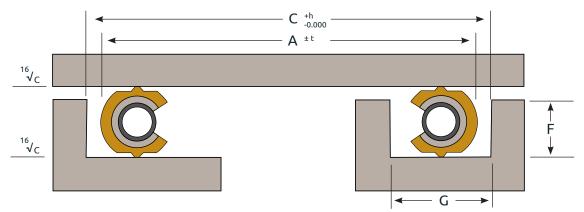
HNV	2	0	0
Cross Section	# Jackets/	Jacket	Section
Type	Lining	Orientation	Orientation

HELICOFLEX® DELTA CHARACTERISTIC VALUES

Jacket Material	Free Height	Seal Type	Installation Compression	Seal Diameter	Seating Load PCI	Maxir Tempe °F		
			e ₂		Y2	- 1		
	0.075	HNV100		t us at sales@tec				
	0.102	HNV200	0.028	0.750 to 8.000	800	428	220	
A1	0.130	HNV200	0.031	1.000 to 16.000	800	482	250	
Aluminum	0.157	HNV200	0.035	2.000 to 20.000	800	536	280	
	0.189	HNV200	0.035	3.000 to 30.000	800	536	280	
	0.220	HNV200	0.039	4.000 to 30.000	860	608	320	
	0.264	HNV200	0.043	5.000 to 30.000	860	644	340	
	0.067	HNV100	Contact	us at sales@tecl	nnetics.com			
	0.094	HNV200	0.024	0.750 to 6.000	915	536	280	
	0.122	HNV200	0.024	1.000 to 12.000	915	572	300	
Silver	0.154	HNV200	0.028	2.000 to 18.000	915	662	350	
	0.185	HNV200	0.031	3.000 to 20.000	915	698	370	
	0.213	HNV200	0.031	4.000 to 20.000	970	752	400	
	0.256	HNV200	0.035	5.000 to 20.000	1030	842	450	
	0.065	HNV100	Contact us at sales@technetics.com					
	0.092	HNV200	0.017	0.750 to 8.000	1030	716	380	
	0.120	HNV200	0.021	1.000 to 16.000	1030	716	380	
Соррег	0.155	HNV200	0.025	2.000 to 18.000	1030	788	420	
	0.179	HNV200	0.025	3.000 to 20.000	1030	842	450	
	0.210	HNV200	0.025	4.000 to 30.000	1030	896	480	
	0.250	HNV200	0.029	5.000 to 30.000	1085	968	520	
	0.065	HNV100	Conta	act us at sales@te	echnetics.com			
	0.092	HNV200	0.017	0.750 to 8.000	1030	788	420	
	0.120	HNV200	0.021	1.000 to 16.000	1030	896	480	
Nickel (Annealed)	0.155	HNV200	0.025	2.000 to 18.000	1030	1022	550	
(Anneated)	0.179	HNV200	0.025	3.000 to 20.000	1030	1112	600	
	0.210	HNV200	0.025	4.000 to 30.000	1030	1202	650	
	0.250	HNV200	0.029	5.000 to 30.000	1085	1202	650	
Stainless Steel			Contact	: us at sales@tecl	nnetics.com			


Dimensions in inches

NOTES:


- 1. PCI = Pounds force per circumferential inch.
- 2. Seating load (Y_2) is an approximation and may vary based on groove clearance, seal diameter and tolerance. Seating load is for circular seals only.
- 3. The customer must verify that system bolts and flanges can generate the required seating load without warping or distorting.
- 4. The customer must test and verify that the seal design meets customer designated performance requirements.
- 5. Seal type HNV100 is available as an option only. Type HNV200 is preferred due to its protective inner lining and can be expected to produce better results.
- 6. Contact Us at sales@technetics.com for low pressure applications.

INTERNAL VACUUM: SEAL TYPE HNV200

EXTERNAL VACUUM: SEAL TYPE HNV220

SEAL AND GROOVE SIZING CALCUATIONS

The equations below can be used for basic groove calculations. Applications that have significant thermal expansion may require additional clearance. Please contact us at sales@technetics.com for design assistance.

DETERMINING SEAL DIAMETER:

Internal Vacuum

< 12" B = C - X - 2 (Seal Section x 0.933) ≥ 12" Contact Us at sales@technetics.com

External Vacuum

A = C - X

DETERMINING GROOVE DIAMETER:

Internal Vacuum

< 12" C = B + X + 2 (Seal Section x 0.933) ≥ 12" Contact Us at sales@technetics.com

External Vacuum

C = A + X

Tolerancing: See chart

Where: A = Seal Outer Diameter
B = Seal Inner Diameter

B = Seal Inner Diameter
C = Groove Outer Diameter
X = Diametral Clearance

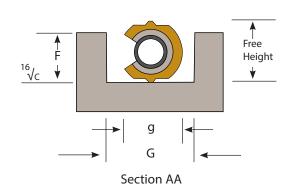
an EnPro Industries company

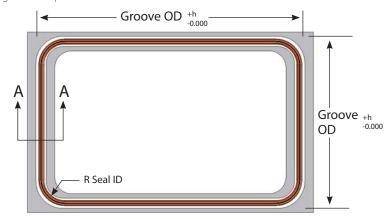
HELICOFLEX® DELTA GROOVE DIMENSIONS

			Seal				Groove						
Jacket Material	Free Height	Seal Section	Seal Type	Seal Diameter Range	Seal Tolerance t³	Diametical Clearance X	Seating Load PCI Y ₂	Groove Tolerance h	Groove Depth F	Groove Width G (Min)	Min. Flange Hardness (Vickers)		
	0.075	0.079	HNV100	-	-		Contact us at sales@technetics.com						
	0.102	0.106	HNV200	0.750 to 8.000	0.005	0.020	800	0.010	0.075 ± 0.002	0.150	65		
	0.130	0.134	HNV200	1.000 to 16.000	0.005	0.030	800	0.010	0.099 ± 0.002	0.180	65		
Aluminum	0.157	0.161	HNV200	2.000 to 20.000	0.005	0.030	800	0.010	0.122 ± 0.002	0.210	65		
	0.189	0.193	HNV200	3.000 to 30.000	0.005	0.035	800	0.010	0.154 ± 0.003	0.245	65		
	0.220	0.228	HNV200	4.000 to 30.000	0.005	0.040	860	0.010	0.180 ± 0.003	0.280	65		
	0.264	0.272	HNV200	5.000 to 30.000	0.005	0.040	860	0.010	0.220 ± 0.003	0.320	65		
	0.067	0.071	HNV100	-	-	Contact us at sales@technetics.com							
	0.094	0.098	HNV200	0.750 to 6.000	0.005	0.020	915	0.010	0.070 ± 0.002	0.140	120		
	0.122	0.126	HNV200	1.000 to 12.000	0.005	0.020	915	0.010	0.098 ± 0.002	0.165	120		
Silver	0.154	0.157	HNV200	2.000 to 18.000	0.005	0.025	915	0.010	0.126 ± 0.002	0.200	120		
	0.185	0.189	HNV200	3.000 to 20.000	0.005	0.030	915	0.010	0.154 ± 0.003	0.235	120		
	0.213	0.220	HNV200	4.000 to 20.000	0.005	0.030	970	0.010	0.180 ± 0.003	0.265	120		
	0.256	0.264	HNV200	5.000 to 20.000	0.005	0.035	1030	0.010	0.220 ± 0.003	0.315	120		
	0.065	0.069	HNV100	-	-	Contact us at sales@technetics.com							
	0.092	0.096	HNV200	0.750 to 8.000	0.005	0.020	1030	0.010	0.075 ± 0.001	0.130	130		
	0.120	0.124	HNV200	1.000 to 16.000	0.005	0.020	1030	0.010	0.098 ± 0.002	0.160	130		
Соррег	0.155	0.159	HNV200	2.000 to 18.000	0.005	0.025	1030	0.010	0.130 ± 0.002	0.200	130		
	0.179	0.183	HNV200	3.000 to 20.000	0.005	0.025	1030	0.010	0.154 ± 0.002	0.225	130		
	0.210	0.218	HNV200	4.000 to 30.000	0.005	0.025	1030	0.010	0.185 ± 0.002	0.255	130		
	0.250	0.257	HNV200	5.000 to 30.000	0.005	0.030	1085	0.010	0.220 ± 0.003	0.300	130		
	0.065	0.069	HNV100	-	-		Conta	ct us at sal	es@technetic	s.com			
	0.092	0.096	HNV200	0.750 to 8.000	0.005	0.020	1030	0.010	0.075 ± 0.001	0.130	220		
	0.120	0.124	HNV200	1.000 to 16.000	0.005	0.020	1030	0.010	0.098 ± 0.002	0.160	220		
Nickel	0.155	0.159	HNV200	2.000 to 18.000	0.005	0.025	1030	0.010	0.130 ± 0.003	0.200	220		
(Annealed)	0.179	0.183	HNV200	3.000 to 20.000	0.005	0.025	1030	0.010	0.154 ± 0.002	0.225	220		
	0.210	0.218	HNV200	4.000 to 30.000	0.005	0.025	1030	0.010	0.185 ± 0.002	0.255	220		
	0.250	0.257	HNV200	5.000 to 30.000	0.005	0.030	1085	0.010	0.220 ± 0.003	0.300	220		
Stainless Steel		Contact	us at sales	@technetics.co	om	Contact us at sales@technetics.com							

NOTES:

- 1. Contact Us at sales@technetics.com for additional sizes.
- 2. Seal type HNV100 is available as an option only. Type HNV200 is preferred due to its protective inner lining and can be expected to produce better results.
- 3. Seal diameters ≥ 12" may require special tolerancing. Contact Applications Engineering for design assistance.




SHAPED SEAL: HELICOFLEX® DELTA GROOVE DIMENSIONS

			Seal						Groo	ve	
Jacket Material	Free Height	Seal Section g	Seal Type	Installation Compression e ₂	Seating Load PCI Y ₂	Seal Tolerance t	Bend Radius ID R (Min)	Groove Tolerance h	Groove Depth F	Groove Width G (Min)	Min. Flange Hardness (Vickers)
	0.075	0.079	HNV100	Contact (ıs at sales@te	chnetics.co	m	Cont	act us at sales	@technet	ics.com
	0.102	0.106	HNV200	0.028	1200	Fit Template	0.750	0.010	0.075 ± 0.002	0.170	65
	0.130	0.134	HNV200	0.031	1050	Fit Template	1.000	0.010	0.099 ± 0.002	0.200	65
Aluminum	0.157	0.161	HNV200	0.035	1050	Fit Template	1.125	0.010	0.122 ± 0.002	0.230	65
	0.189	0.194	HNV200	0.035	1050	Fit Template	1.375	0.010	0.154 ± 0.003	0.265	65
	0.220	0.228	HNV200	0.039	1170	Fit Template	1.500	0.010	0.180 ± 0.003	0.300	65
	0.264	0.272	HNV200	0.043	1200	Fit Template	1.750	0.010	0.220 ± 0.003	0.340	65
	0.067	0.071	HNV100	Contact (ıs at sales@te	chnetics.co	m	Cont	act us at sales	@technet	ics.com
	0.094	0.098	HNV200	0.024	1050	Fit Template	0.625	0.010	0.070 ± 0.002	0.160	120
Silver	0.122	0.126	HNV200	0.024	1150	Fit Template	0.875	0.010	0.098 ± 0.002	0.185	120
	0.154	0.157	HNV200	0.028	1100	Fit Template	1.000	0.010	0.126 ± 0.002	0.220	120
	0.185	0.189	HNV200	0.031	1100	Fit Template	1.250	0.010	0.154 ± 0.003	0.255	120
	0.065	0.069	HNV100	Contact (us at sales@te	chnetics.co	m	Cont	act us at sales	@technet	ics.com
	0.092	0.096	HNV200	0.017	1100	Fit Template	0.625	0.010	0.075 ± 0.001	0.150	130
Соррег	0.120	0.124	HNV200	0.021	1350	Fit Template	0.875	0.010	0.098 ± 0.002	0.180	130
	0.155	0.159	HNV200	0.025	1275	Fit Template	1.000	0.010	0.130 ± 0.002	0.220	130
	0.179	0.183	HNV200	0.025	1275	Fit Template	1.125	0.010	0.154 ± 0.002	0.245	130
	0.065	0.069	HNV100	Contact (ıs at sales@te	chnetics.co	m	Cont	act us at sales	@technet	ics.com
	0.092	0.096	HNV200	0.017	1100	Fit Template	0.625	0.010	0.075 ± 0.001	0.150	220
Nickel	0.120	0.124	HNV200	0.021	1350	Fit Template	0.875	0.010	0.098 ± 0.002	0.180	220
(Annealed)	0.155	0.159	HNV200	0.025	1275	Fit Template	1.000	0.010	0.130 ± 0.003	0.220	220
	0.179	0.183	HNV200	0.025	1275	Fit Template	1.125	0.010	0.154 ± 0.002	0.245	220
Stainless Steel	Contact us at sales@technetics.com										

NOTES:

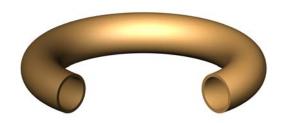
- 1. PCI = Pounds force per circumferential inch.
- 2. Seating Load (Y₂) is an approximation and may vary based on groove clearance, seal diameter and tolerance. Load values may be slightly higher in corner radii.
- 3. Seal type HNV100 is available as an option only. Type HNV200 is preferred due to its protective inner lining and can be expected to produce better results.
- 4. Seal Tolerance: Seal is manufactured to fit customer supplied/purchased groove template.
- 5. All machining and polishing marks must follow seal circumference.

an EnPro Industries company

APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279 E-Mail: sales@technetics.com

1							
COMPANY:				PHONE:			,
CONTACT:				FAX:			
ADDRESS:				E-MAIL:			
				DATE:			
APPLICATION: (please	e attach custor	ner drawi	ng / sketch)				
Brief Description:	1				'		,
Annual quantities:				RFQ Quantities:			
Is This a New Design?		Yes	o No	— Are Modifications Possible?		o Yes	o No
Drawing or Sketch Attached	l? c	Yes	o No	What is the Seal Type?		o Shaped	o Circular
SERVICE CONDITION	S:						
Media:				Life Expectancy:			
Working Temperature:				Max/Proof Pressure:		@ Temp.	.=
Working Pressure:			,	Max Temperature:		– @ Pressure	<u> </u>
Pressure Direction:				Target Sealing Level:	Helium:		Std.cc/sec
Pressure Cycles:					Flow Rate:		cc/minute
Temperature Cycles:					Other:		
FLANGE DETAILS:	(Please Prov	vide Drawi	ng)				
Amount of Flange Moveme	nt in Service: (Inc	:hes)	Radi	al: Axia	l:	#Cycle	es:
Material:				Thickness	5:		
o Groove / Counter Bore:	Pl	ease list di	imensions in (— Groove Details section			
o ANSI Raised Face	Size:		# Ratir	ng: Face	Surface Finish	ո:	(RMS)
o Flange(s) with Clamping S	- System: (ISO,KF	, etc)		Standard:	Size	2:	
o Other:	Description:				(Please Prov	vide Drawing)	
GROOVE DETAILS:	(Please Provid	e Drawing)				
Type (Rectangular, Dovetail,	, etc.):		1				
Outer Diameter:	_	Toleran	ce:	Depth:	Tolerance:		
Inner Diameter:		Toleran		Finish (RMS)	– Type:		
				Finish Type: lathe (circular), endmill (- * '	other	_
POLITING DETAILS	(5) 5 :1		,				,
BOLTING DETAILS:	(Please Provid	ie Drawing)	Tura de Carada e			
Size:	-			Type / Grade:			
Number:	_Bolt Circle_			Tapped / Through:			
OTUED.							
OTHER:							-
Special coating / plating spe							
Special quality / inspection s	specifications:						
Other:							
I							


O-FLEX™

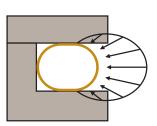
Metal O-Rings

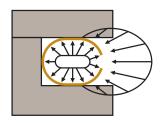
SEALING CONCEPT

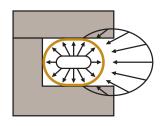
O-FLEX™ Metal O-Rings are designed to provide a sealing option for high pressure/temperature applications that require minimal spring back. The O-FLEX™ is made from high strength metal tubing that is coiled, cut and welded to size. It is available in standard cross section increments of 1/32″. The O-FLEX™ seating load can be adjusted to the application by varying the cross section and tubing wall thickness. Typical applications include Performance Engines, Plastic Extrusion/Molding, Military Specifications, Aerospace and Chemical Processing.

O-FLEX™ TYPES

Basic

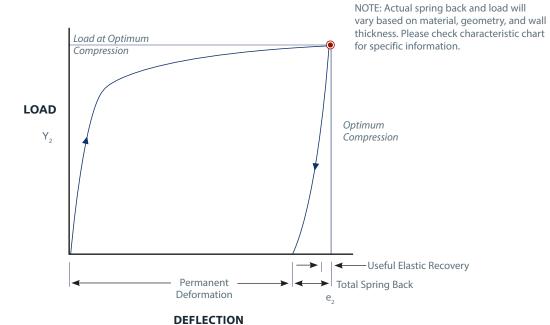

The basic O-FLEX $^{\text{TM}}$ is designed for low to moderate pressure applications as high pressure may collapse the exposed tubing wall.


Self Energizing


The Self-Energizing O-FLEXTM is designed for high pressure applications. Small holes are drilled in the tubing wall exposed to the system pressure. These holes create an energizing effect by allowing the pressure to enter the O-FLEXTM. As a result, the pressure inside the seal increases with the system pressure and minimizes the possibility of collapsing the exposed tubing wall.

Pressure Filled

The Pressure Filled O-FLEXTM is designed for Performance Engine applications that require sealing at elevated pressure and temperature in a high cycling environment. The O-FLEXTM is filled with an inert gas that increases in pressure proportional to increases in system temperature. This results in an energizing effect that partially offsets the loss of material strength in service.



O-FLEX™ CHARACTERISTIC CURVE

MATERIAL SELECTION

Material	Status	Temperature	Heat Treatment				
SS 321	Standard	T < 700°F	NA				
Alloy 600	Standard	T < 1,000°F	NA				
Alloy X750	Standard	T < 1,100°F	NA				
Alloy 718	Optional	T < 1,200°F	NA				
Other	Contact us at sales@technetics.com						

PLATING/COATING SELECTION

,,				
Plating/Coating	Status	Standard Thickness	Temperature	Groove Finish*
PTFE	Optional	.001/.003	T < 500°F	16 - 32 RMS
Silver	Standard	.001/.002	T < 800°F	16 - 63 RMS
Silver w/ Gold strike	Optional	.001/.002	T < 1,200°F	16 - 63 RMS
Nickel	Standard	.001/.002	T < 1,600°F	16 - 32 RMS
None	-	-	-	< 16 RMS
Other		Contact us at sales@	technetics.com	

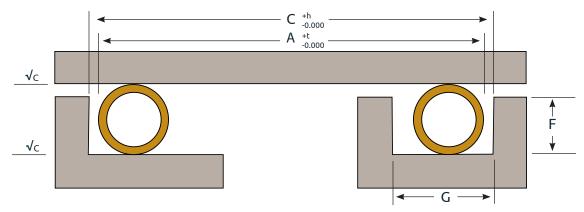
Dimensions in inches

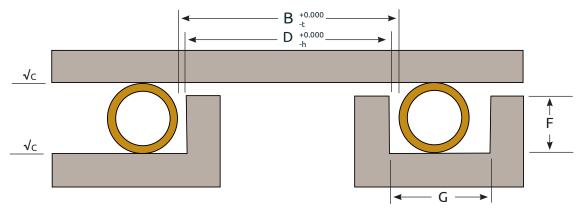
* Groove finish must follow seal circumference (lathe turned finish). Contact Us at sales@technetics.com for non-standard thicknesses.

O-FLEX	™ CHARACT	ERISTIC VA	LUES		CHARACTERISTIC VALUES AT 70°F				
					SS 321	Alloy 600	Alloy X-750		
Free Height	Compression e ₂	Seal Diameter Range	Material Thickness	Thin (T) Medium (M) Heavy (H)	Seating Load (PCI) Y ₂	Seating Load (PCI) Y ₂	Seating Load (PCI) Y ₂		
		0.500	0.006	Т	457	503	594		
0.032	0.006	to	0.010	М	1028	1131	1336		
		4.000	-	Н	-	-	-		
		0.500	0.010	Т	571	628	742		
0.063	0.012	to	0.012	М	799	879	1039		
		10.000	0.014	Н	1256	1382	1633		
		1.000	0.010	Т	343	377	446		
0.094	0.020	to	0.012	М	514	565	668		
		20.000	0.018	Н	1313	1444	1707		
		2.000	0.010	Т	343	377	446		
0.125	0.026	to	0.020	М	1142	1256	1485		
		40.000	0.025	Н	-	2262	2673		
		3.000	-	Т	-	-	-		
0.156	0.031	to	0.020	М	857	943	1114		
		50.000 +	-	Н	-	-	-		
		4.000	-	Т	-	-	-		
0.188	0.039	to	0.020	М	657	723	854		
		50.000 +	0.032	Н	2113	2324	2747		
		5.000	0.025	Т	799	879	1039		
0.250	0.051	to	0.032	М	1370	1507	1781		
		50.000 +	0.049	Н	3026	3329	3934		

Dimensions in inches

NOTES:


- PCI = Pounds force per circumferential inch
- 2. Seating Load (Y₂) is an approximation and may vary based on groove clearance, seal diameter, tolerance and plating thickness. It does not allow for system pressure requirements and should be verified for each application and seal size.
- 3. The customer must verify that system bolts and flanges can generate the required seating load without warping or distorting.
- 4. The customer must test and verify that the seal design meets customer designated performance requirements.


27

sales@technetics.com technetics.com

INTERNAL PRESSURE

EXTERNAL PRESSURE

SEAL AND GROOVE SIZING CALCULATIONS

The equations below can be used for basic groove calculations. Applications that have significant thermal expansion may require additional clearance. Please contact us at sales@technetics.com for design assistance.

DETERMINING SEAL DIAMETER:

Internal External

A = C-X-2Pmax B = D + X + 2Pmax

DETERMINING GROOVE DIAMETER:

InternalExternalC = A + X + 2PmaxD = B - X - 2Pmax

Tolerancing: See chart

Where: A = Seal Outer Diameter
B = Seal Inner Diameter
C = Groove Outer Diameter
D = Groove Inner Diameter

Pmax = Maximum Plating or Coating Thickness

X = Diametral Clearance

Groove Finish \sqrt{c} : See Plating/Coating Section

SEAL AND GROOVE DIMENSIONS

	SEAL			GR	OOVE	
Free Height	Seal Diameter Range	Seal Tolerance t	Tolerance Clearance Toler t x		Groove Depth F	Groove Width (Min.) G
0.032	0.500 to 4.000	0.005	0.006	0.004	0.026 ±0.001	0.055
0.063	0.500 to 10.000	0.005	0.006	0.004	0.051 ±0.001	0.090
0.094	1.000 to 20.000	0.005	0.008	0.004	0.073 ±0.002	0.125
0.125	2.000 to 40.000	0.005	0.008	0.004	0.099 ±0.002	0.160
0.156	3.000 to 50.000 +	0.005	0.014	0.006	0.125 ±0.002	0.200
0.188	4.000 to 50.000 +	0.005	0.014	0.006	0.149 ±0.002	0.250
0.250	5.000 to 50.000 +	0.008	0.019	0.008	0.199 ±0.002	0.350

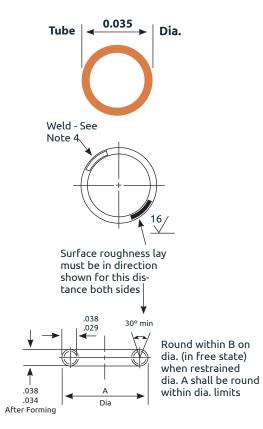
Dimensions in inches

NOTE: Contact Us at sales@technetics.com for additional sizes.

LEGEND

- : $Q > 1.32 \times 10^{-5} \text{ std.cc/sec He}$
- : $1.32 \times 10^{-9} < Q < 1.32 \times 10^{-5}$ std.cc/sec He
- Arr : Q <1.32 x 10⁻⁹ std.cc/sec He
- Q : Approximate leak rate per meter of circumference
- T: Thin
- M: Medium
- H: Heavy

Tube Coatings	Tube Diameter	S	.stee 321	l		Alloy 600			Alloy X750	
	Wall Thickness	Т	М	Н	Т	М	Н	Т	М	Н
Non Plated	0.032" 0.063" 0.094" 0.125" 0.156"	: : :	-	•		:	•	:	•	•
	0.188″ 0.250″	1	•	•	1	•	•	1	•	•
	Wall Thickness	Т	М	Н	Т	М	Н	Т	М	Н
PTFE	0.032" 0.063" 0.094" 0.125"	•	•	A A A		•	A A A	•	•	A A A
	0.156" 0.188" 0.250"	- - -	•	A A	• •	•	A A	• •	•	A A
	Wall Thickness	T	М	Н	T	М	Н	Т	М	Н
Silver	0.032" 0.063" 0.094" 0.125" 0.156" 0.188" 0.250"	•	•	A A A A A A A A A A A A A A A A A A A	•	•	A A A A A A A A A A A A A A A A A A A	•	•	A A A A A
	Wall Thickness	Т	М	Н	Т	М	н	Т	М	н
Nickel	0.032" 0.063" 0.094" 0.125" 0.156" 0.188" 0.250"	:	•	•	:	•	•	:	•	•



TUBE 0.035 DIAMETER

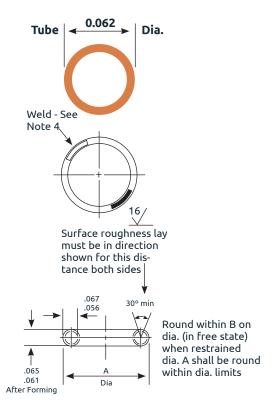
Military Standard

MS 9141 Gasket, metal O-ring, .035 tube x .006 wall, cres MS 9371 Gasket, metal O-ring, .035 tube x .006 wall, cres, silver plated

- 1. Ring shall be flat within B.
- 2. *Preferred sizes.
- 3. Material: Corrosion and heat resistant steel tubing AMS 5570 or AMS 5576.
- 4. Finish weld flush with tube OD. Smooth blend within .125 of Weld. Dimensions at blend shall not be more than .003 below adjacent surfaces.
- 5. Finish: Silver plate AMS 2410 .0010-.0015 thick. Dimensions to be met before plating. Contact points permissible on ID of ring: (MS 9371 only)
- 6. Surface roughness: AS 291/ANSI B46.1
- 7. Manufacturing specification: AMS 7325
- 8. Identification: Mark MS part number and manufacturer's identification on container.
- 9. Dimensions in inches.
- 10. Do not use unassigned part numbers.
- 11. Contact Us at sales@technetics.com for design requirements.

Add to MS Number	A +.005 000	В	Add to MS Number	A +.005 000	В
-03	.250 †	.020	-15	.750*	.020
-04	.281 †	.020	-16	.812	.020
-05	.312†	.020	-17	.875*	.020
-06	.344†	.020	-18	.938	.020
-07	.375 †	.020	-19	1.000*	.020
-08	.406†	.020	-20	1.125	.020
-09	.438†	.020	-21	1.250	.020
-10	.469†	.020	-22	1.375	.020
-11	.500	.020	-23	1.500*	.020
-12	.562	.020	-24	1.625	.020
-13	.625*	.020	-25	1.750*	.020
-14	.688	.020	-26	1.875	.020
Dimensions in	inches		-27	2.000*	0.20

† Contact Us at sales@technetics.com for these sizes.



TUBE 0.062 DIAMETER

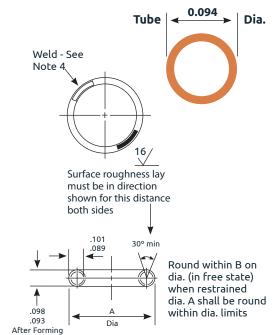
Military Standard

MS 9142 Gasket, metal O-ring, .062 tube x .006 wall, cres MS 9202 Gasket, metal O-ring, .062 tube x .010 wall, cres MS 9372 Gasket, metal O-ring, .062 tube x .006 wall, cres, silver plated MS 9373 Gasket, metal O-ring, .062 tube x .010 wall, cres, silver plated

- 1. Ring shall be flat within B.
- 2. *Preferred sizes.
- 3. Material: Corrosion and heat resistant steel tubing AMS 5570 or AMS 5576.
- 4. Finish weld flush with tube OD. Smooth blend within .125 of Weld. Dimensions at blend shall not be more than .004 below adjacent surfaces.
- 5. Finish: Silver plate AMS 2410 .0010-.0015 thick. Dimensions to be met before plating. Contact points permissible on ID of ring: (MS 9372, MS 9373 only)
- 6. Surface roughness: AS 291/ANSI B46.1
- 7. Manufacturing specification: AMS 7325
- 8. Identification: Mark MS part number and manufacturer's identification on container.
- 9. Dimensions in inches.
- 10. Do not use unassigned part numbers.
- 11. Contact Us at sales@technetics.com for design requirements.

NOTE: MS 9142 and MS 9372 available only from dash 013 through dash 099.

Add to MS Number	A +.005 000	В									
-013	.438*	.030	-037	1.188	.030	-061	2.625	.060	-103	5.250	.090
-014	.469	.030	-038	1.219	.030	-062	2.688	.060	-105	5.375	.090
-015	.500*	.030	-039	1.250*	.030	-063	2.750*	.060	-107	5.500	.090
-016	.531	.030	-040	1.312	.030	-064	2.812	.060	-109	5.625	.090
-017	.562*	.030	-041	1.375*	.030	-065	2.875	.060	-111	5.750	.090
-018	.594	.030	-042	1.438	.030	-066	2.938	.060	-113	5.875	.090
-019	.625*	.030	-043	1.500*	.030	-067	3.000*	.060	-115	6.000*	.090
-020	.656	.030	-044	1.562	.030	-069	3.125	.060	-117	6.125	.090
-021	.688*	.030	-045	1.625*	.030	-071	3.250	.060	-119	6.250	.090
-022	.719	.030	-046	1.688	.030	-073	3.375	.060	-121	6.375	.090
-023	.750*	.030	-047	1.750*	.030	-075	3.500*	.060	-123	6.500	.090
-024	.781	.030	-048	1.812	.030	-077	3.625	.060	-125	6.625	.090
-025	.812	.030	-049	1.875	.030	-079	3.750	.060	-127	6.750	.090
-026	.844	.030	-050	1.938	.030	-081	3.875	.060	-129	6.875	.090
-027	.875*	.030	-051	2.000*	.030	-083	4.000*	.060	-131	7.000*	.090
-028	.906	.030	-052	2.062	.030	-085	4.125	.060	-133	7.125	.090
-029	.938	.030	-053	2.125	.030	-087	4.250	.060	-135	7.250	.090
-030	.969	.030	-054	2.188	.030	-089	4.375	.060	-137	7.375	.090
-031	1.000*	.030	-055	2.250*	.030	-091	4.500*	.060	-139	7.500	.090
-032	1.031	.030	-056	2.312	.030	-093	4.625	.060	-141	7.625	.090
-033	1.062	.030	-057	2.375	.030	-095	4.750	.060	-143	7.750	.090
-034	1.094	.030	-058	2.438	.030	-097	4.875	.060	-145	7.875	.090
-035	1.125*	.030	-059	2.500*	.030	-099	5.000*	.060	-147	8.000*	.090
-036	1.156	.030	-060	2.562	.060	-101	5.125	.090			



TUBE 0.094 DIAMETER

Military Standard

MS 9203 Gasket, metal O-ring, .094 tube x .006 wall, cres MS 9204 Gasket, metal O-ring, .094 tube x .010 wall, cres MS 9374 Gasket, metal O-ring, .094 tube x .006 wall, cres, silver plated MS 9375 Gasket, metal O-ring, .094 tube x .010 wall, cres, silver plated

- 1. Ring shall be flat within B.
- 2. *Preferred sizes.
- 3. Material: Corrosion and heat resistant steel tubing AMS 5570 or AMS 5576.
- 4. Finish weld flush with tube OD. Smooth blend within .125 of Weld. Dimensions at blend shall not be more than .004 below adjacent surfaces.
- 5. Finish: Silver plate AMS 2410 .0010-.0015 thick. Dimensions to be met before plating. Contact points permissible on ID of ring: (MS 9374, MS 9375 only)
- 6. Surface roughness: AS 291/ANSI B46.1
- 7. Manufacturing specification: AMS 7325
- Identification: Mark MS part number and manufacturer's identification on container.
- 9. Dimensions in inches.
- 10. Do not use unassigned part numbers.
- 11. Contact Us at sales@technetics.com for design requirements.

NOTE: MS 9374 and MS 9375 available only through dash 195

Add to MS Number	A +.005 000	В									
-010	1.000*	.030	-038	2.188	.030	-065	3.875	.060	-143	8.750	.090
-012	1.031	.030	-039	2.250*	.030	-066	3.938	.060	-147	9.000*	.090
-013	1.062	.030	-040	2.312	.030	-067	4.000*	.060	-151	9.250	.090
-014	1.094	.030	-041	2.375	.030	-069	4.125	.060	-155	9.500	.090
-015	1.125*	.030	-042	2.438	.030	-071	4.250	.060	-159	9.750	.090
-016	1.156	.030	-043	2.500*	.030	-073	4.375	.060	-163	10.000*	.090
-017	1.188	.030	-044	2.562	.060	-075	4.500*	.060	-167	10.250	.125
-018	1.219	.030	-045	2.625	.060	-077	4.625	.060	-171	10.500	.125
-019	1.250*	.030	-046	2.688	.060	-079	4.750	.060	-175	10.750	.125
-020	1.281	.030	-047	2.750*	.060	-081	4.875	.060	-179	11.000*	.125
-021	1.312	.030	-048	2.812	.060	-083	5.000*	.060	-183	11.250	.125
-022	1.344	.030	-049	2.875	.060	-085	5.125	.090	-187	11.500	.125
-023	1.375*	.030	-050	2.938	.060	-087	5.250	.090	-191	11.750	.125
-024	1.406	.030	-051	3.000	.060	-089	5.375	.090	-195	12.000*	.125
-025	1.438	.030	-052	3.062	.060	-091	5.500*	.090	-203	12.500	.150
-026	1.469	.030	-053	3.125	.060	-095	5.750	.090	-211	13.000	.150
-027	1.500*	.030	-054	3.188	.060	-099	6.000*	.090	-219	13.500	.150
-028	1.562	.030	-055	3.250	.060	-103	6.250	.090	-227	14.000	.150
-029	1.625	.030	-056	3.312	.060	-107	6.500	.090			
-030	1.688	.030	-057	3.375	.060	-111	6.750	.090			
-031	1.750*	.030	-058	3.438	.060	-115	7.000*	.090			
-032	1.812	.030	-059	3.500*	.060	-119	7.250	.090			
-033	1.875	.030	-060	3.562	.060	-123	7.500	.090			

7.750

8.000*

8.250

8.500

-127

-131

-135

-139

.090

.090

.090

.090

Dimensions in inches

1.938

2.000*

2.062

2.125

.030

.030

.030

.030

-061

-062

-063

-064

3.625

3.688

3.750

3.812

.060

.060

.060

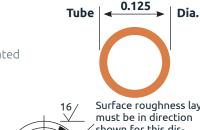
.060

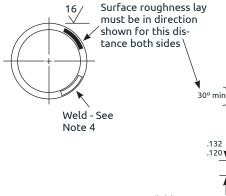
-034

-035

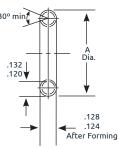
-036

-037




TUBE 0.125 DIAMETER

Military Standard


MS 9205 Gasket, metal O-ring, .125 tube x .010 wall, cres MS 9376 Gasket, metal O-ring, .125 tube x .010 wall, cres, silver plated

- 1. Ring shall be flat within B.
- 2. *Preferred sizes.
- Material: Corrosion and heat resistant steel tubing AMS 5570 or AMS 5576. Tube size .124-.127 dia., wall thick. .009-.011.
- 4. Finish weld flush with tube OD. Smooth blend within .125 of Weld. Dimensions at blend shall not be more than .004 below adjacent surfaces.
- 5. Finish: Silver plate AMS 2410 .0010-.0015 thick. Dimensions to be met before plating. Contact points permissible on ID of ring: (MS 9376 only)
- 6. Surface roughness: AS 291/ANSI B46.1
- 7. Manufacturing specification: AMS 7325
- 8. Identification: Mark MS part number and manufacturer's identification on container.
- 9. Dimensions in inches.
- 10. Do not use unassigned part numbers.
- 11. Contact Us at sales@technetics.com for design requirements.

NOTE: MS 9376 available only through dash 170

Round within B

on dia. (in free

restrained dia. A shall be round

within dia. limits

state) when

Add to MS Number	A +.005 000	В												
-010	2.000*	.030	-049	4.438	.060	-102	7.750	.090	-238	16.250	.200	-490	32.000*	.500
-011	2.062	.030	-050	4.500*	.060	-104	7.875	.090	-242	16.500	.200	-498	32.500	.500
-012	2.125	.030	-051	4.562	.060	-106	8.000*	.090	-246	16.750	.200	-506	33.000	.500
-013	2.188	.030	-052	4.625	.060	-108	8.125	.090	-250	17.000	.200	-514	33.500	.500
-014	2.250*	.030	-053	4.688	.060	-110	8.250	.090	-254	17.250	.200	-522	34.000	.500
-015	2.312	.030	-054	4.750	.060	-112	8.375	.090	-258	17.500	.200	-530	34.500	.500
-016	2.375	.030	-055	4.812	.060	-114	8.500	.090	-262	17.750	.200	-538	35.000	.500
-017	2.438	.030	-056	4.875	.060	-116	8.625	.090	-266	18.000*	.200	-546	35.500	.500
-018	2.500*	.030	-057	4.938	.060	-118	8.750	.090	-270	18.250	.200	-554	36.000*	.500
-019	2.562	.060	-058	5.000*	.060	-120	8.875	.090	-274	18.500	.200	-562	36.500	.500
-020	2.625	.060	-059	5.062	.090	-122	9.000*	.090	-278	18.750	.200	-570	37.000	.500
-021	2.688	.060	-060	5.125	.090	-126	9.250	.090	-282	19.000	.200	-578	37.500	.500
-022	2.750*	.060	-061	5.188	.090	-130	9.500	.090	-286	19.250	.250	-586	38.000	.500
-023	2.812	.060	-062	5.250	.090	-134	9.750	.090	-290	19.500	.250	-594	38.500	.500
-024	2.875	.060	-063	5.312	.090	-138	10.000*	.090	-294	19.750	.250	-602	39.000	.500
-025	2.938	.060	-064	5.375	.090	-142	10.250	.125	-298	20.000*	.250	-610	39.500	.500
-026	3.000*	.060	-065	5.438	.090	-146	10.500	.125	-306	20.500	.250	-618	40.000*	1.000
-027	3.062	.060	-066	5.500*	.090	-150	10.750	.125	-314	21.000	.250	-634	41.000	1.000
-028	3.125	.060	-067	5.562	.090	-154	11.000*	.125	-322	21.500	.250	-650	42.000	1.000
-029	3.188	.060	-068	5.625	.090	-158	11.250	.125	-330	22.000*	.250	-666	43.000	1.000
-030	3.250	.060	-069	5.688	.090	-162	11.500	.125	-338	22.500	.500	-682	44.000	1.000
-031	3.312	.060	-070	5.750	.090	-166	11.750	.125	-346	23.000	.500	-698	45.000*	1.000
-032	3.375	.060	-071	5.812	.090	-170	12.000*	.125	-354	23.500	.500	-714	46.000	1.000
-033	3.438	.060	-072	5.875	.090	-174	12.250	.150	-362	24.000*	.500	-730	47.000	1.000
-034	3.500*	.060	-073	5.938	.090	-178	12.500	.150	-370	24.500	.500	-746	48.000	1.000
-035	3.562	.060	-074	6.000*	.090	-182	12.750	.150	-378	25.000	.500	-762	49.000	1.000
-036	3.625	.060	-076	6.125	.090	-186	13.000	.150	-386	25.500	.500	-778	50.000*	1.000
-037	3.688	.060	-078	6.250	.090	-190	13.250	.150	-394	26.000	.500	Dimensio	ns in incl	hes
-038	3.750	.060	-080	6.375	.090	-194	13.500	.150	-402	26.500	.500	Dimensio		
-039	3.812	.060	-082	6.500	.090	-198	13.750	.150	-410	27.000	.500			

14.000*

14.250

14.500

14.750

15.000

15.250

15.500

15,750

16.000*

.150

.175

.175

.175

.175

.175

.175

.175

.175

-418

-426

-434

-442

-450

-458

-466

-474

-482

27.500

28.000*

28.500

29.000

29.500

30,000

30.500

31.000

31.500

.500

.500

.500

.500

.500

-040

-041

-042

-043

-044

-045

-046

-047

-048

3.875

3.938

4.000*

4.062

4.125

4.188

4.250

4.312

4.375

.060

.060

.060

.060

.060

.060

.060

.060

.060

-084

-086

-088

-090

-092

-094

-096

-098

-100

6.625

6.750

6.875

7.000*

7.125

7.250

7.375

7.500

7.625

.090

.090

.090

.090

.090

.090

.090

.090

.090

-202

-206

-210

-214

-218

-226

-230

-234

APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279

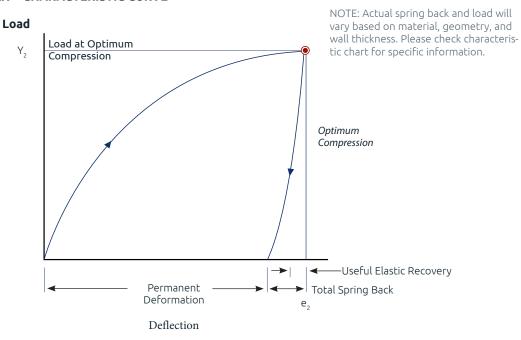
E-Mail: sales@technetics.com

COMPANY:				PHONE:		
CONTACT:				FAX:		
ADDRESS:				E-MAIL:		
				DATE:		
APPLICATION: (please	e attach cust	omer draw	ing / sketch)			
Brief Description:						
·						
Annual quantities:				RFQ Quantities:		
Is This a New Design?		o Yes	o No	Are Modifications Possible?	o Yes	o No
Drawing or Sketch Attached	j?	o Yes	o No	What is the Seal Type?	o Shaped	o Circular
SERVICE CONDITION	ıs:					
Media:				Life Expectancy:		
Working Temperature:				Max/Proof Pressure:	@ Temp.	. =
Working Pressure:				Max Temperature:	@ Pressure	· =
Pressure Direction: (Internal/External/Axial)				Target Sealing Level:	Helium:	Std.cc/sec
Pressure Cycles:					Flow Rate:	cc/minute
Temperature Cycles:				Ī	Other:	
FLANGE DETAILS:	(Please Pr	ovide Drawi	rina)			
Amount of Flange Moveme			Radia	al: Axial	l: #Cycle	es:
Material:				Thickness		
o Groove / Counter Bore:	ſ	Please list d	dimensions in G	— iroove Details section		
o ANSI Raised Face	Size	::	# Rating	g: Face :	Surface Finish:	(RMS)
o Flange(s) with Clamping S	System: (ISO,k	〈F, etc)	_	Standard:	Size:	_
o Other:	Description	1:			(Please Provide Drawing)	
GROOVE DETAILS:	(Please Provi	ide Drawing	g)			
Type (Rectangular, Dovetail,	, etc.):					
Outer Diameter:		Toleran	nce:	Depth:	Tolerance:	
Inner Diameter:		– Toleran	·	Finish (RMS)	Type:	_
illier Didirecer.		-	· · ·	Finish Type: lathe (circular), endmill (r		_
BOLTING DETAILS:	(Please Provi	ide Drawing	g)			
Size:	_			Type / Grade:		
Number:	_Bolt Circle	;	_	Tapped / Through:		
OTHER:						
Special coating / plating spe	acification:					
Special quality / inspection s						
Other:	зреспісацопа.					
Otner.						

SEALING CONCEPT

The sealing concept of C-FLEX™ metal C-rings is based on the elastic deformation of a metal "C" substrate which, during the compression cycle, gives a contact point on each sealing surface.

The substrate characteristics determine the compressive load of the seal. This load combined with an accurate compression rate results in a specific pressure which is directly related to the sealing level obtained. A certain specific pressure is necessary to make the seal flow into the flange imperfections. In service, this load is supplemented by the system pressure. A softer surface treatment is available to increase the plasticity of the seal and reduce the specific pressure necessary to reach the desired sealing level.



C-FLEX™ TYPES

The opening of the C-FLEX™ seal is typically oriented toward the system pressure. In service, the system pressure "energizes" the seal providing supplemental load. This energizing effect increases in direct proportion to increases in differential system pressure.

Internal Pressure	
External Pressure	C
Axial Pressure	

C-FLEX™ CHARACTERISTIC CURVE

MATERIAL SELECTION

Material	Status	Temperature	Heat Treatment				
Alloy X750	Standard	T < 1,100°F	Solution heat treat and precipitation harden per AMS 5598				
Alloy 718	Optional	T < 1,200°F	Solution heat treat and precipitation harden per AMS 5596				
Other	Co	Contact Us at sales@technetics.com					

PLATING/COATING SELECTION

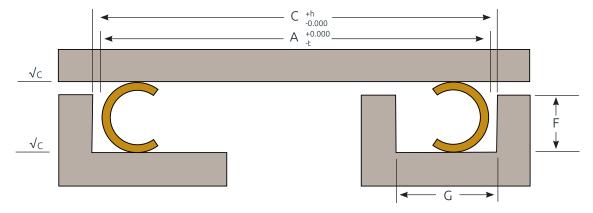
Plating/Coating	Status	Standard Thickness	Temperature	Groove Finish*			
PTFE	Optional	.001/.003	T < 500°F	16 - 32 RMS			
Silver	Standard	.001/.002	T < 800°F	16 - 63 RMS			
Silver w/ Gold strike	Optional	.001/.002	T < 1,200°F	16 - 63 RMS			
Nickel	Standard	.001/.002	T < 1,600°F	16 - 32 RMS			
None	-	-	-	< 16 RMS			
Other	Contact Us at sales@technetics.com						

^{*} Groove finish must follow seal circumference (lathe turned finish)

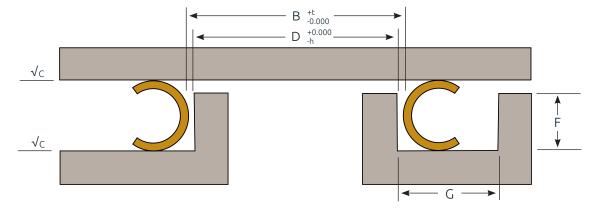
C-FLEX™ CHARACTERISTIC VALUES

Alloy X-750 Alloy 718 Seeking Load Seeking Load

					Alloy X-750	Alloy /18
Free Height	Installation Compression e ₂	Seal Diameter Range	Material Thickness	Thin (T) Medium (M) Heavy (H)	Seating Load (PCI) Y ₂	Seating Load (PCI) Y ₂
		0.325	0.006	Т	95	110
0.047	0.006	to	-	М	-	-
		2.000	0.008	Н	210	245
		0.375	0.008	Т	85	100
0.063	0.012	to	-	М	-	-
		8.000	0.010	Н	260	300
		0.500	0.010	Т	140	165
0.094	94 0.020	to	-	М	-	-
		16.000	0.015	Н	400	460
		1.000	0.010	Т	130	150
0.125	0.026	to	0.015	М	240	280
		25.000 +	0.020	Н	570	660
		2.000	0.015	Т	200	230
0.156	0.032	to	-	М	-	-
		25.000 +	0.025	Н	600	690
		3.000	0.020	T	350	410
0.188	0.039	to	-	М	-	-
		25.000 +	-	Н	-	-
		4.000	0.025	Т	315	365
0.250	0.051	to	-	М	-	-
		25.000 +	-	Н	-	-


Dimensions in inches

NOTES:


- 1. PCI = Pounds force per circumferential inch
- 2. Seating Load (Y₂) is an approximation and may vary based on groove clearance, seal diameter, tolerance and plating thickness. It does not allow for system pressure requirments and should be verified for each application and seal size.
- 3. The customer must verify that system bolts and flanges can generate the required seating load without warping or distorting.
- 4. The customer must test and verify that the seal design meets customer designated performance requirements.

INTERNAL PRESSURE

EXTERNAL PRESSURE

SEAL AND GROOVE SIZING CALCULATIONS

The equations below can be used for basic groove calculations. Applications that have significant thermal expansion may require additional clearance. Please contact us at sales@technetics.com for design assistance.

DETERMINING SEAL DIAMETER:

DETERMINING GROOVE DIAMETER:

Tolerancing: See chart

Where: A = Seal Outer Diameter
B = Seal Inner Diameter
C = Groove Outer Diameter
D = Groove Inner Diameter

Pmax = Maximum Plating or Coating Thickness

X = Diametral Clearance

Groove Finish √c: See Plating/Coating Section

SEAL AND GROOVE DIMENSIONS

	SEAL	GROOVE					
Free Height	Seal Diameter Range	Diametral Clearance x	Groove Depth F	Groove Width (Min.) G			
0.047	0.325 to 2.000	0.006	0.038 ±0.001	0.055			
0.063	0.375 to 8.000	0.007	0.050 ±0.001	0.075			
0.094	0.500 to 16.000	0.008	0.074 ±0.002	0.105			
0.125	1.000 to 25.000 +	0.012	0.100 ±0.002	0.135			
0.156	2.000 to 25.000 +	0.016	0.127 ±0.002	0.170			
0.188	3.000 to 25.000 +	0.018	0.151 ±0.002	0.200			
0.250	4.000 to 25.000 +	0.020	0.200 ±0.003	0.260			

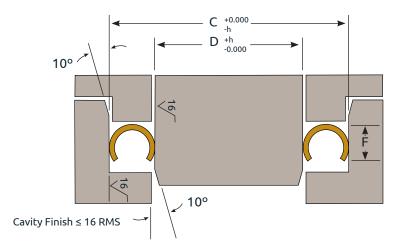
Dimensions in inches

NOTE: Contact Us at sales@technetics.com for additional sizes.

TOLERANCES

Seal Diameter Range	Seal Tolerance t	Groove Tolerance h
0.250 to 0.999	0.002	0.001
1.000 to 1.999	0.002	0.002
2.000 to 2.999	0.003	0.003
3.000 to 3.999	0.003	0.003
4.000 to 4.999	0.004	0.004
5.000 to 6.999	0.006	0.006
7.000 to 9.999	0.007	0.007
10.000 to 14.999	0.012	0.012
15.000 to 19.999	0.015	0.015
20.000 +	Contact Us at sales	@technetics.com

Dimensions in inches


SHAPED SEALS


C-FLEX™ seals can be made in a variety of shapes and sizes. Typical Internal and External pressure seals can be formed into racetrack, square, triangular and rectangular shapes. Contact Applications Engineering for more information regarding shaped seal capabilities.

Minimum Corner Radii for Shaped C-FLEX™ Seals								
Cross Section	0.063	0.094	0.125	0.157	0.188	0.250		
Minimum Inner Radius	0.375	0.565	1.000	2.000	3.000	4.000		

Dimensions in inches

SEAL					CAVITY DIMENSIONS					
Cross Section CS	Material Thickness (Prior to Forming)	Seal ID Range	Axial Length (Max. Ref)	Axial Load PCI	Seal Tolerance t	Cavity OD C	Cavity ID D	Cavity Tolerance h	Cavity Depth F (Min)	Cavity OD/ID Eccentricity (Max.)
	0.008	0.375 to 1.249	0.050	110	0.001	B - 0.003	A + 0.003	0.001	0.075	0.0005
0.063	0.008	1.250 to 2.500	0.050	110	0.001	B - 0.004	A + 0.004	0.001	0.075	0.0005
0.003	0.010	0.375 to 1.249	0.050	130	0.001	B - 0.003	A + 0.003	0.001	0.075	0.0005
	0.010	1.250 to 2.500	0.050	130	0.001	B - 0.004	A + 0.004	0.001	0.075	0.0005
	0.010	0.500 to 1.249	0.075	80	0.001	B - 0.003	A + 0.003	0.001	0.105	0.0010
0.004	0.010	1.250 to 3.000	0.075	80	0.001	B - 0.004	A + 0.004	0.001	0.105	0.0010
0.094	0.015	0.500 to 1.249	0.075	190	0.001	B - 0.003	A + 0.003	0.001	0.105	0.0010
	0.015	1.250 to 3.000	0.075	190	0.001	B - 0.004	A + 0.004	0.001	0.105	0.0010
	0.015	0.750 to 2.499	0.100	165	0.001	B - 0.003	A + 0.003	0.001	0.135	0.0010
	0.015	2.500 to 8.000	0.100	165	0.002	B - 0.006	A + 0.006	0.002	0.135	0.0010
0.125	0.020	0.750 to 2.499	0.100	210	0.001	B - 0.003	A + 0.003	0.001	0.135	0.0010
	0.020	2.500 to 8.000	0.100	210	0.002	B - 0.006	A + 0.006	0.002	0.135	0.0010
	0.015	2.000 to 5.999	0.125	240	0.002	B - 0.006	A + 0.006	0.002	0.170	0.0015
	0.015	6.000 to 10.000	0.125	240	0.002	B - 0.007	A + 0.007	0.002	0.170	0.0015
0.157	0.025	2.000 to 5.999	0.125	360	0.002	B - 0.006	A + 0.006	0.002	0.170	0.0015
	0.025	6.000 to 10.000	0.125	360	0.002	B - 0.007	A + 0.007	0.002	0.170	0.0015
	0.020	3.000 to 5.999	0.150	280	0.002	B - 0.007	A + 0.007	0.002	0.200	0.0015
0.188	0.020	6.000 to 10.000	0.150	280	0.002	B - 0.008	A + 0.008	0.002	0.200	0.0015
	0.025	4.000 to 6.499	0.200	360	0.002	B - 0.008	A + 0.008	0.002	0.260	0.0015
0.250	0.025	6.500 to 10.000	0.200	360	0.002	B - 0.009	A + 0.009	0.002	0.260	0.0015

Dimensions in inches

- 1. PCI = Pounds force per circumferencial inch
 2. Axial load is an approximate value. Actual value will vary based on diameter, interferences, friction coefficients, finish, platings, lubrication, etc.
 3. Load values are for Alloy 718 at 70°F

APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279 E-Mail: sales@technetics.com

COMPANY:				PHONE:			
CONTACT:				FAX:			
ADDRESS:				E-MAIL:			
				DATE:			
APPLICATION: (pleas	e attach custo	mer drav	ving / sketch)				
Brief Description:						'	,
Annual quantities:				RFQ Quantities:			
Is This a New Design?		yes Yes	o No	— Are Modifications Possible		o Yes	o No
Drawing or Sketch Attached	d? (Yes	o No	What is the Seal Type?		o Shaped	o Circular
SERVICE CONDITION	IS:						
Media:			,	Life Expectancy:	,		,
Working Temperature:				Max/Proof Pressure:		@ Temp), =
Working Pressure:				Max Temperature:		— @ Pressur	e =
Pressure Direction:				Target Sealing Level:	Helium:		Std.cc/sec
Pressure Cycles:					Flow Rate:		cc/minute
Temperature Cycles:					Other:		
FLANGE DETAILS:	(Please Pro	vide Drav	ving)				
Amount of Flange Moveme			Rad	lial: Ax	ial:	#Cycl	es:
Material:	1		1	Thickne	ess:		1
o Groove / Counter Bore:	Pl	ease list	dimensions in	— Groove Details section			
o ANSI Raised Face	Size:		# Rati	ing: Fac	e Surface Fini	sh:	(RMS)
o Flange(s) with Clamping	- System: (ISO,KI	, etc)		Standard:	Si	ze:	_
o Other:	Description:				— (Please Pro	ovide Drawing))
GROOVE DETAILS:	(Please Provid	le Drawin	ıg)				
Type (Rectangular, Dovetail	l, etc.):		,		,	1	,
Outer Diameter:	•	Tolera	nce:	Depth:	Tolerance:		
Inner Diameter:		Tolera		Finish (RMS)	Type:		
inner blameter.		TOTCT		Finish Type: lathe (circular), endmi		other	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,, 54.15.	
BOLTING DETAILS:	(Please Provid	de Drawir	ng)				
Size:	_			Type / Grade:			
Number:	_Bolt Circle			Tapped / Through:			
OTHER:							
Special coating / plating spe	ecification:						
Special quality / inspection	specifications:						
Other:							

SEALING CONCEPT

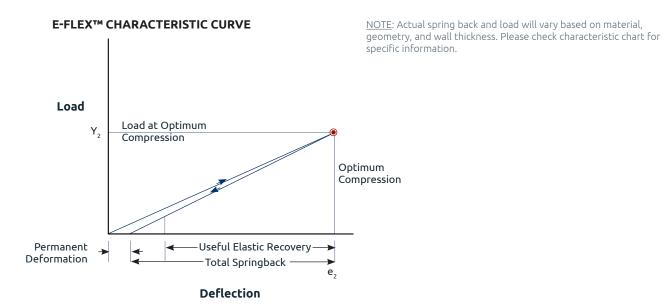
E-FLEXTM Metal E-rings are designed to have low load, high spring back performance for high pressure/temperature applications. In service, the E-FLEXTM is pressure energized by the system which increases the contact stress and further minimizes leakage. The E-FLEXTM geometry can be designed to meet the requirements for each unique application and can be manufactured in a wide range of sizes. Typical markets for E-FLEXTM seals include Aerospace, Industrial Turbines, and Automotive.

E-FLEX™ TYPES

E-FLEX™

The standard E-FLEX™ design exhibits improved spring back and reduced load compared to C-Rings.

SUPER E-FLEX™



The Super E-FLEX™ is designed to have less stress during installation. These seals typically have less load than the traditional E-FLEX™ seals and have nearly 100% spring back at room temperature.

MULTI-CONVOLUTION

These seals are designed with extra convolutions and special geometry for applications that require maximum spring back in service.

COATINGS AND PLATINGS

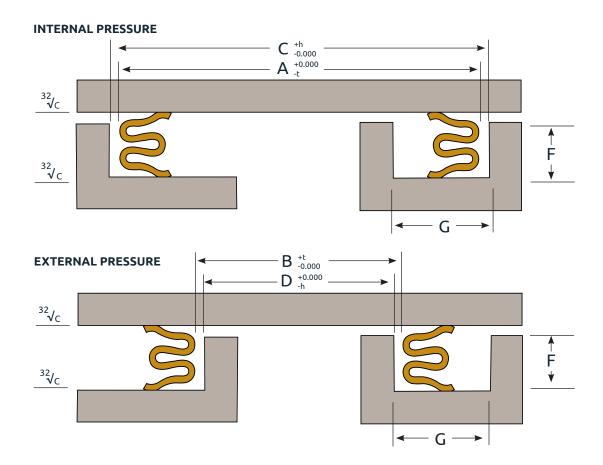
Туре	Description
Tribological Coating	An HVOC tribaloy coating ideal for applications exhibiting high wear patterns.
Silver Plating	Not recommended for most applications. The E-FLEX™ seal does not generate enough load to plastically deform the silver plating.
Custom	Please contact us at sales@technetics.com for special or custom coating requests.

MATERIAL SELECTION

Material	Status	Temperature	Heat Treatment
Alloy X750	Optional	T < 1,100°F	Solution heat treat and precipitation harden per AMS5598
Alloy 718	Standard	T < 1,200°F	Solution heat treat and precipitation harden per AMS5596
Waspaloy	Optional	T < 1,350°F	Solution heat treat, stabilize and precipitation harden per AMS5544

E-FLEX™ CHARACTERISTICS FOR ALLOY 718 MATERIAL AT 70°F

E-FLEX™ Type	Free Height	Material Thickness	Seal Diameter	Seating Load (PCI) Y ₂	Installation Springback	Installation Compression e ₂
	0.075	0.006	0.625 6.000	42 28	0.009 0.011	0.013
	0.098	0.008	0.625 8.000	104 64	0.013 0.014	0.021
	0.102	0.010	0.625 8.000	92 56	0.011 0.013	0.015
	0.132	0.008	1.250 24.000	32 16	0.013 0.014	0.014
E-FLEX™	0.132	0.015	1.250 24.000	50 28	0.013 0.014	0.014
	0.218	0.015	3.375 40.000	93 78	0.026 0.031	0.037
	0.243	0.010	6.000 40.000	12 11	0.072 0.073	0.073
	0.295	0.020	10.000 60.000	83 69	0.046 0.047	0.048
	0.375	0.020	8.000 60.000	55 44	0.062 0.062	0.062
	0.108	0.0095	0.950 40.000	38 28	0.015 0.021	0.021
Super E-FLEX™	0.140	0.010	1.750 40.000	24 14	0.022 0.022	0.022
	0.140	0.012	1.750 40.000	41 24	0.021 0.022	0.022
	0.209	0.007	25.000	30	0.040	0.048
	0.230	0.008	25.000	30	0.065	0.065
Multiple Convolution	0.243	0.008	25.000	46	0.046	0.057
E-FLEX™	0.263	0.006	25.000	29	0.062	0.068
	0.286	0.010	25.000	25	0.061	0.061
	0.300	0.010	25.000	55	0.041	0.055


Dimensions in inches

NOTES:

- 1. PCI = Pounds force per circumferential inch
- Seating load (Y₂) is an approximation and may vary based on groove clearance, seal diameter, tolerance and coating thickness. It does not allow for system pressure requirements and should be verified for each application and seal size.
- 3. The customer must verify that system bolts and flanges can generate the required seating load without warping or distorting.
- 4. The customer must test and verify that the seal design meets customer designated performance requirements.

Other materials: Please contact us at sales@technetics.com Anti-Wear Coatings: Please contact us at sales@technetics.com

SEAL AND GROOVE SIZING CALCUATIONS

The equations below can be used for basic groove calculations. Applications that have significant thermal expansion may require additional clearance. Please contact us at sales@technetics.com for design assistance.

DETERMINING SEAL DIAMETER:

<u>Internal</u> <u>External</u>

A = C-X-2Pmax B = D + X + 2Pmax

DETERMINING GROOVE DIAMETER:

<u>Internal</u> <u>External</u>

C = A + X + 2Pmax D = B - X - 2Pmax

Tolerancing: See chart

Where: A = Seal Outer Diameter

B = Seal Inner Diameter C = Groove Outer Diameter D = Groove Inner Diameter

Pmax = Maximum Plating or Coating Thickness

x = Diametral clearance

TOLERANCES

	E-FL	E-FLEX™		-FLEX™	Multiple Convolution E-FLEX™	
Seal Diameter Range	Groove Tolerance "h"	Seal Tolerance "t"	Groove Tolerance "h"	Seal Tolerance "t"	Groove Tolerance "h"	Seal Tolerance "t"
1.000 to 1.999	0.002	0.003	0.002	0.004	-	-
2.000 to 2.999	0.002	0.004	0.003	0.006	-	-
3.000 to 3.999	0.003	0.005	0.004	0.008	-	-
4.000 to 4.999	0.003	0.006	0.004	0.008	-	-
5.000 to 5.999	0.003	0.006	0.005	0.010	-	-
6.000 to 6.999	0.004	0.007	0.006	0.012	-	-
7.000 to 7.999	0.004	0.008	0.007	0.014	-	-
8.000 to 8.999	0.005	0.009	0.008	0.016	-	-
9.000 to 9.999	0.005	0.010	0.009	0.018	-	-
10.000 to 10.99	0.005	0.010	0.010	0.020	0.005	0.010
11.000 to 11.999	0.006	0.011	0.010	0.020	0.006	0.011
12.000 to 12.999	0.006	0.012	0.010	0.020	0.006	0.012
13.000 to 13.999	0.007	0.013	0.010	0.020	0.007	0.013
14.000 +		Cont	act Us at sales	@technetics.o	om	

Dimensions in inches

		SEAL			GROOVE DIMENSIONS					
E-FLEX™ Type	Free Height	Material Thickness	Radial Width	Internal A Diameter	External B Diameter	Diametral Clearance	Groove Depth		e Width n) G	
.57-	c.gc	(Prior to Forming)	(Max. Ref.)	Range	Range	Х	F	Int. Press.	Ext. Press.	
	0.075	0.006	0.066	1.360 to 6.000	1.200 to 6.000	0.003	0.062 ± 0.001	0.090	0.090	
	0.098	0.008	0.083	2.000 to 10.000	1.200 to 10.000	0.003	0.077 ± 0.002	0.110	0.110	
	0.102	0.010	0.091	2.000 to 10.000	1.200 to 10.000	0.003	0.087 ± 0.001	0.115	0.115	
	0.132	0.008	0.120	1.360 to 13.000	2.500 to 13.000	0.003	0.118 ± 0.002	0.145	0.145	
E-FLEX™	0.132	0.015	0.120	1.360 to 13.000	2.500 to 13.000	0.003	0.118 ± 0.002	0.145	0.145	
	0.218	0.015	0.190	2.600 to 13.000	2.600 to 13.000	0.005	0.181 ± 0.002	0.210	0.220	
	0.243	0.010	0.260	6.000 to 40.000	6.000 to 40.000	0.005	0.170 ± 0.003	0.300	0.320	
	0.295	0.020	0.266	6.000 to 60.000	6.000 to 60.000	0.005	0.247 ± 0.003	0.315	0.335	
	0.375	0.020	0.340	8.000 to 60.000	8.000 to 60.000	0.005	0.313 ± 0.003	0.405	0.425	
	0.108	0.0095	0.145	2.000 to 13.000	2.500 to 13.000	0.003	0.087 ± 0.002	0.170	0.180	
Super E-FLEX™	0.140	0.010	0.194	2.500 to 13.000	2.500 to 13.000	0.005	0.118 ± 0.002	0.220	0.250	
2 / 22/	0.140	0.012	0.194	2.500 to 13.000	2.500 to 13.000	0.005	0.118 ± 0.002	0.220	0.250	
	0.209	0.007	0.116	10.000 to 40.000	10.000 to 40.000	0.003	0.199 / 0.166	0.180	0.180	
	0.230	0.008	0.184	10.000 to 40.000	10.000 to 40.000	0.003	0.210 / 0.170	0.255	0.255	
Multiple	0.243	0.010	0.150	10.000 to 60.000	10.000 to 60.000	0.003	0.231 / 0.191	0.220	0.220	
Convolution E-FLEX™	0.263	0.006	0.150	10.000 to 40.000	10.000 to 40.000	0.003	0.248 / 0.200	0.220	0.220	
	0.286	0.010	0.200	10.000 to 40.000	10.000 to 40.000	0.003	0.270 / 0.230	0.270	0.270	
	0.300	0.010	0.150	10.000 to 60.000	10.000 to 60.000	0.003	0.285 / 0.245	0.220	0.220	

Dimensions in inches

NOTE: Contact Us at sales@technetics.com for additional sizes.

				SEAL D	DIMENSIONS	
Part Number	AS1895/7 Reference	Duct Size	OD	ID (Ref)	Out of Roundness of Outer Diameter	Free Height
E-800128 -100	AS1895/7 -100	1.00	1.249 1.245	0.958	0.040 0.020	0.113 0.103
E-800128 -125	AS1895/7 -125	1.25	1.499 1.495	1.208	0.040 0.020	0.113 0.103
E-800128 -150	AS1895/7 -150	1.50	1.749 1.745	1.458	0.040 0.020	0.113 0.103
E-800128 -175	AS1895/7 -175	1.75	1.999 1.995	1.708	0.040 0.020	0.113 0.103
E-800128 -200	AS1895/7 -200	2.00	2.249 2.245	1.958	0.040 0.020	0.113 0.103
E-800128 -225	AS1895/7 -225	2.25	2.499 2.493	2.208	0.040 0.020	0.113 0.103
E-800128 -250	AS1895/7 -250	2.50	2.749 2.743	2.458	0.040 0.020	0.113 0.103
E-800128 -275	AS1895/7 -275	2.75	2.999 2.993	2.708	0.040 0.020	0.113 0.103
E-800128 -300	AS1895/7 -300	3.00	3.249 3.243	2.958	0.040 0.020	0.113 0.103
E-800128 -325	AS1895/7 -325	3.25	3.499 3.491	3.208	0.040 0.020	0.113 0.103
E-800128 -350	AS1895/7 -350	3.50	3.749 3.741	3.458	0.050 0.030	0.113 0.103
E-800128 -400	AS1895/7 -400	4.00	4.249 4.241	3.958	0.050 0.030	0.113 0.103
E-800128 -450	AS1895/7 -450	4.50	4.749 4.739	4.458	0.050 0.030	0.113 0.103
E-800128 -500	AS1895/7 -500	5.00	5.249 5.239	4.958	0.060 0.040	0.113 0.103
E-800128 -550	AS1895/7 -550	5.50	5.749 5.737	5.458	0.060 0.040	0.113 0.103
E-800128 -600	AS1895/7 -600	6.00	6.249 6.237	5.958	0.060 0.040	0.113 0.103
E-800128 -650	AS1895/7 -650	6.50	6.749 6.735	6.458	0.065 0.045	0.113 0.103
E-800128 -700	AS1895/7 -700	7.00	7.249 7.235	6.958	0.065 0.045	0.113 0.103
E-800128 -750	AS1895/7 -750	7.50	7.749 7.733	7.458	0.065 0.045	0.113 0.103

NOTE: Material: Alloy 718 per AMS 5596

Heat Treatment: Solution heat treated and precipitation hardened per AMS 5596 in inert atmosphere.

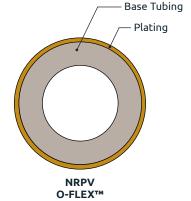
APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279 E-Mail: sales@technetics.com

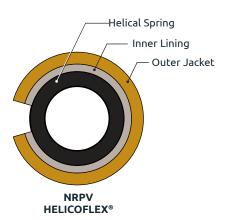
COMPANIV.			DUONE:			
CONTACT:			PHONE:			
CONTACT:			FAX:			
ADDRESS:			E-MAIL:			
			DATE:			
APPLICATION: (please	attach customer draw	ring / sketch)				
Brief Description:						
Annual quantities:			RFQ Quantities:			
Is This a New Design?	o Yes	o No	Are Modifications Possible	?	o Yes	o No
Drawing or Sketch Attached?	o Yes	o No	What is the Seal Type?		o Shaped	o Circular
SERVICE CONDITIONS	:					
Media:			Life Expectancy:			
Working Temperature:			Max/Proof Pressure:		@ Temp	o. =
Working Pressure:			Max Temperature:		@ Pressure	e =
Pressure Direction: (Internal/External/Axial)			Target Sealing Level:	Helium:		Std.cc/sec
Pressure Cycles:				Flow Rate:		cc/minute
Temperature Cycles:				Other:		
FLANGE DETAILS:	(Please Provide Draw	ving)				
Amount of Flange Movement	t in Service: (Inches)	Rad	dial: Axi	ial:	#Cycl	es:
Material:			Thickne	ss:		
o Groove / Counter Bore:	Please list (dimensions in	Groove Details section			
o ANSI Raised Face	Size:	# Rat	ing:Face	e Surface Finis	sh:	(RMS)
o Flange(s) with Clamping Sy	ystem: (ISO,KF, etc)		Standard:	Siz	ze:	
o Other:	Description:			(Please Provide Drawing)		
GROOVE DETAILS: (Please Provide Drawin	g)				
Type (Rectangular, Dovetail, e	etc.):					
Outer Diameter:	Tolerar	nce:	Depth:	Tolerance:		
Inner Diameter:	Tolerar	-	Finish (RMS)	Type:		_
- Illilei Diameter.			Finish Type: lathe (circular), endmill		other	
			1	(11000 00.0000)		
BOLTING DETAILS:	(Please Provide Drawin	g)				
Size:			Type / Grade:			
Number:	Bolt Circle		Tapped / Through:			
OTHER:						
Special coating / plating spec	sification:					
Special quality / inspection sp	pecifications:					
Other:						

NUCLEAR

Nuclear Reactor Pressure Vessel Seals


SEALING CONCEPT

Technetics Group is the world's leading manufacturer of Nuclear Reactor Pressure Vessel (RPV) Closure Head Seals. In addition, Technetics Group sealing technology is used extensively as primary seals on spent fuel storage and transportation casks.


O-FLEX™ METAL O-RINGS

The O-FLEX™ is manufactured of Alloy 718 or Stainless Steel 304 tubing. Alloy 718 is the most common and preferred material because it offers optimum strength, spring back and resistance to radiation and corrosion. The base tubing is plated with pure (99.95%) silver. This combination of elastic core (tubing) with deformable plastic layer (silver) provides durable sealing for traditional Nuclear Reactor Pressure Vessels.

HELICOFLEX® SPRING ENERGIZED SEALS

The HELICOFLEX® seal is a high performance, flexible, metal seal that has exceptional compression and elastic recovery properties. The HELICOFLEX® seal is composed of a closewound helical spring surrounded by two metal jackets. The spring is selected to have a specific compression resistance. During compression, the resulting specific pressure forces the jacket to yield and fill the flange imperfections while ensuring positive contact with the flange sealing faces. Each coil of the helical spring acts independently and allows the seal to conform to surface irregularities on the flange surface. This combination of elasticity and plasticity makes the HELICOFLEX® seal the best choice for ageing reactors.

RPV CLOSURE HEAD SEALS

These seals are the primary seal for the reactor pressure vessel. Typically, the seals are used in tandem with an inner and outer seal for redundancy. The seals are positioned in the reactor pressure vessel head with clips and screws for easy installation and assembly.

CONTROL ROD DRIVE (CRD) SEALS

PTFE coated O-FLEX™ seals for CRD mechanisms.

SPENT FUEL CASKS

Primary seals for casks used in the storage and transportation of spent fuel assemblies.

OTHER APPLICATIONS

Steam Turbines Primary Loop Valves Waste Heat Systems Steam Pressurizer

REACTOR TYPES

BWR – All Types PWR – All Types Gas Cooled Navy Nuclear

QA SYSTEM ASSESSMENT

ISO 9001 Title 10 CFR 50 Appendix B ANSI / ASME N45.2 Favorable Audits by NUPIC Members ANSI / ASME NQA-1 KTA 1401

RPV Closure Lid

RPV O-FLEX™ Seals with installation clips

an EnPro Industries company

GENERAL SERVICES

- Global leader for more than 50 years in nuclear RPV seal design and manufacturing. References available.
- RPV seal design and manufacturing for most PWR Nuclear Power Plants (NPP) and all BWR NPPs worldwide and to major NSSS worldwide. References available.
- Spent fuel cask seal design to all major spent fuel (transportation and storage) casks manufacturers worldwide. Reference available.
- Individual RPV seal design and recommendations for newly built PWR and BWR units.
- Seal and retainer design improvements to meet today's industries requirements of tight outage itineraries and ALARA requirements.
- Qualified and experienced on-site field services to evaluate the cause of numerous RPV seal problems, i.e. for RPV seal leakages, etc.
- Nuclear seal qualification services for new applications.
- Quality Assurance program based on the requirements of 10 CFR 50 Appendix B, ASME, N45.2, ASME Boiler and Pressure Vessel Codes V and IX, NUPIC audited.
- 3rd party evaluation available for on-site laser scan & repair of mating surfaces, reactor pressure vessel flange, and pressure vessel closure head grooves.
- NPP field staff training available, i.e. handling, installation, removal of RPV seals.
- Airfreight packaging and crating and airfreight arrangement for quick response transportation (airfreight capability limitation given by seal design).

TECHNETICS GROUP EMERGENCY RESPONSE

- Emergency response for outage. Spare RPV seals available on demand.
- 24/7 emergency service phone (803) 695-3553 (U.S.A.)
- 24 36 hour worldwide emergency site service available, on request.

technetics.com

NUCLEAR RPV CLOSURE HEAD SEALS

RPV O-	FLEX™			ALLOY 718 BASE TUBING				
Free Height	Wall Thickness	Recommended Diameter Range	Seating Load (PCI) Y ₂ *	Installation Compression e ₂	Installation Compression %	Total Springback (Min.)		
0.375	0.038	40 to		0.030 0.037	8% 10%	0.009 0.009		
0.575	0.030	180	2500	0.045 0.060 0.064	12% 16% 17%	0.009 0.009 0.009		
0.500	120			0.040 0.050	8% 10%	0.015 0.015		
0.500	0.050	to >180	2500	0.060 0.080 0.085	12% 16% 17%	0.015 0.015 0.015		
0.625	0.625 0.063 to >180			0.050 0.062	8% 10%	0.017 0.017		
0.625			4000	0.075 0.100 0.106	12% 16% 17%	0.017 0.017 0.017		

Dimensions in inches

NOTE: Recommended compression % for NRPV O-FLEXTM is 16%

^{*} PCI = Pounds force per Circumferential Inch

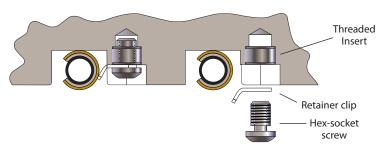
DDV/ HEI	.ICOFLEX [©]	9. ⊔N200						
KF V IILL	ICOI LLX	. 1111200	HIGH TEMPERATURE ALLOY SPRING					
Free Height	Wall Thickness	Recommended Diameter Range	Seating Load (PCI) Y2*	Installation Compression e2	Installation Compression %	Total Springback (Min.)		
		40						
0.520	N/A	to	4000	0.052	10%	0.017		
		>180						

Dimensions in inches

53

CLIP ASSEMBLIES

RPV Closure Head Seals are typically held in the pressure vessel head with specially designed clips. Technetics Group recommends a clip be located at a minimum every 30" of seal circumference. This will ensure that the seal is securely held in place.


TYPE I

This clip can only be used with the traditional O-FLEXTM RPV seal. This clip is designed to penetrate either a slot (most common) or a hole in ID of the O-FLEXTM.

O-FLEX[™] Number Diameter of Slots up to 72" 72" to 144" 144" to 200" 12 200" + 16 or 24 **←s→** Dimensions in inches Threaded Insert Retainer clip Hex-socket

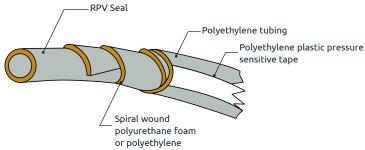
TYPE II

This style clip can be used with either the O-FLEXTM or the HELICOFLEX® RPV seals. It is designed to hold the seal to the outer circumference of the groove without having to penetrate the ring through a slot. This makes seal installation easier since the seal does not require special alignment.

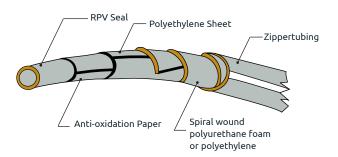
TYPE I CLIP (O-FLEX™ ONLY)

Free Height	Wall Thickness	Slot Length S	Slot Width T	Hole Diameter D
0.375	0.038	0.281	0.125	0.070
0.500	0.050	0.375	0.205	0.093
0.625	0.063	0.438	0.256	0.125

Dimensions in inches


<u>NOTE:</u> Type I clip can be used with a slot or hole (depending on ring design)

RPV CLOSURE HEAD SEAL PACKAGING


Technetics Group offers two styles of protective packaging for RPV seals:

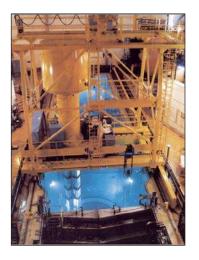
Regular "Casement Tubing"

ZIPPER LOCK TUBING PACKAGING

This is a packaging upgrade that was developed using ALARA minded principles. This packaging is designed to be removed quickly and therefore reduce radiation exposure time during unpacking and installation.

SHIPPING

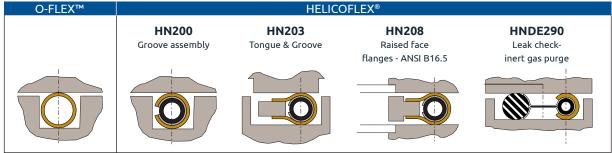
Individually wrapped seals are securely packaged in wooden crates. Special provisions are made for extra protection during overseas shipments. Typically, the crate is transported by way of a specialized drop deck freight carrier. However, some crates may be custom designed for specialty ocean or air freight carriers.



TN-40 Dry Storage Cask

Technetics Group metal seals offer the performance and flexibility to meet stringent spent fuel cask requirements. The HELICOFLEX® seal in particular can be made in a wide variety of geometries and shapes to meet the demanding requirements of cask designers. Typical seal types are listed below. Please contact Applications Engineering to discuss your cask requirements.

TYPICAL CASK SEAL LOCATIONS:


Cask Lid Closures Fill Ports Drain Ports

TN-32 Dry Storage Cask

TYPICAL CONFIGURATIONS

APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279

E-Mail: sales@technetics.com

COMPANY:				PHONE:					
CONTACT:				FAX:					
ADDRESS:				E-MAIL:					
				DATE:					
APPLICATION: (please	attach custo	mer drawin	g / sketch)						
Brief Description:	,				1				
Annual quantities:				RFQ Quantities:					
Is This a New Design?		o Yes	o No	Are Modifications Possible?		o Yes	o No		
Drawing or Sketch Attached	?	o Yes	o No	What is the Seal Type?	,	o Shaped	o Circular		
SERVICE CONDITION	S:								
Media:			1	Life Expectancy:					
Working Temperature:				Max/Proof Pressure:		@ Temp.	=		
Working Pressure:				Max Temperature:		— @ Pressure	=		
Pressure Direction: (Internal/External/Axial)				Target Sealing Level:	Helium:		Std.cc/sec		
Pressure Cycles:				_	Flow Rate:		cc/minute		
Temperature Cycles:			,		Other:	,			
FLANGE DETAILS:	(Please Pro	vide Drawin	g)						
Amount of Flange Movemer	nt in Service: (Ir	nches)	Radial	: Axia	l:	#Cycle	s:		
Material:				Thicknes	s:				
o Groove / Counter Bore:	Р	lease list din	nensions in Gr	oove Details section					
o ANSI Raised Face	Size:		# Rating	: Face	Surface Finis	h:	(RMS)		
o Flange(s) with Clamping S	System: (ISO,K	F, etc)		Standard:	_ Siz	e:	_		
o Other:	Description:				(Please Prov	vide Drawing)			
GROOVE DETAILS:	(Please Provid	de Drawing)							
Type (Rectangular, Dovetail,	etc.):								
Outer Diameter:		Tolerance	<u>:</u>	Depth:	Tolerance:				
Inner Diameter:		Tolerance		Finish (RMS)	– Type:		_		
				Finish Type: lathe (circular), endmill (other	_		
BOLTING DETAILS:	/DI D	d- D:\		7,000,000,000,000			,		
	(Please Provi	de Drawing)		T /C					
Size:	-			Type / Grade:					
Number:	Bolt Circle		_	Tapped / Through:					
OTHER:									
Special coating / plating spe	oification:								
Special quality / inspection s									
Other:	peomoations.								
Other.									
I									

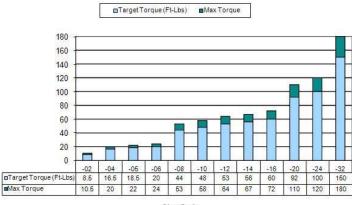
K-PORT

Metal Port Seal Technology

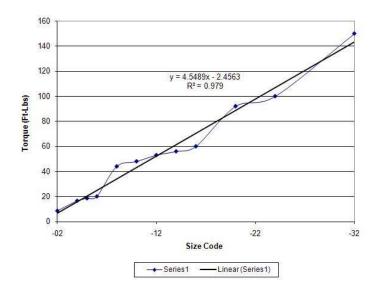
The K-Port seal is designed to prevent fluid leakage and/or pressure loss between a fitting (per AS-933; supercedes MS-33656) and a connection port (per AS-5202; supercedes MS-33649).

The K-Port seal design was optimized in house by our expert engineering staff and analyzed through FEA, burst pressure testing and leak testing. It is designed to function under extreme temperatures over a wide pressure range.

The K-Port seal design has been qualified for space flight and is also used in cryogenic and high temperature applications. This seal can be found in various gas, solid and liquid fuel delivery hardware such as nozzles, AN fittings, sensors, instrumentation and valves.


TECHNICAL INFORMATION

Suggested torque for pressure up to 3000 P.S.I. for boss seals manufactured from X-750 or A-286 with Gold Plating at LN2 and Room Temperatures.


These torque values were tested on AS5202/AS933 Control designed hardware machined from SS316.

PORT SEAL TORQUE CHARTS

Size Code

Size Code	Seal Dimension Outer Diameter	Seal Dimension Inner Diameter
-02	0.562	0.325
-03	0.625	0.387
-04	0.688	0.451
-05	0.750	0.514
-06	0.812	0.577
-07	0.875	0.640
-08	1.000	0.766
-09	1.062	0.829
-10	1.125	0.893
-11	1.325	1.020
-12	1.403	1.083
-14	1.531	1.208
-16	1.656	1.333
-18	1.844	1.521
-20	1.970	1.645
-24	2.245	1.895
-28	2.656	2.270
-32	2.938	2.521

METAL PORT SEALING TECHNOLOGY

Part Number Prefix	Base Material	Plating/ Coating	Temperature Limit	Surface Finish
F-400455-Size Code	SS 304	PTFE	450°F	32 rms or better
F-400617-Size Code	SS 304	Silver	700°F	16 rms or better
F-400521-Size Code	SS 304	Gold	700°F	16 rms or better
F-400623-Size Code	17-4 PH	PTFE	450°F	32 rms or better
F-400456-Size Code	17-4 PH	Gold	900°F	16 rms or better
F-400458-Size Code	A286	PTFE	450°F	32 rms or better
F-400421-Size Code	A286	Gold	1000°F	16 rms or better
F-400616-Size Code	A286	Silver	800°F	16 rms or better
F-400413-Size Code	Alloy X-750	PTFE	450°F	32 rms or better
F-400440-Size Code	Alloy X-750	Silver	800°F	16 rms or better
F-400422-Size Code	Alloy X-750	Gold	1400°F	16 rms or better

Size Code is tubing Outer Diameter in sixteenths of an inch

APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279

E-Mail: sales@technetics.com

COMPANY:				PHONE:					
CONTACT:				FAX:					
ADDRESS:				E-MAIL:					
				DATE:					
APPLICATION: (please	e attach custom	er drawing	/ sketch)						
Brief Description:									
Annual quantities:				RFQ Quantities:					
Is This a New Design?	0	Yes	o No	Are Modifications Possible?		o Yes	o No		
Drawing or Sketch Attached	i? o`	Yes	o No	What is the Seal Type?		o Shaped	o Circular		
SERVICE CONDITION	IS:								
Media:				Life Expectancy:					
Working Temperature:	Vorking Temperature:		Max/Proof Pressure:		@ Temp.	=			
Working Pressure:				Max Temperature:		@ Pressure	=		
Pressure Direction: (Internal/External/Axial)				Target Sealing Level:	Helium:		Std.cc/sec		
Pressure Cycles:					Flow Rate:		cc/minute		
Temperature Cycles:					Other:				
FLANGE DETAILS:	(Please Provi	de Drawing)						
Amount of Flange Moveme	nt in Service: (Inch	es)	Radial	: Axial	l:	#Cycles	s:		
Material:				Thickness	:				
o Groove / Counter Bore:	Ple	ase list dim	ensions in Gr	oove Details section					
o ANSI Raised Face	Size:		# Rating	: Face :	Surface Finish	ı:	_(RMS)		
o Flange(s) with Clamping	System: (ISO,KF,	etc)		Standard:	Size	::	_		
o Other:	Description:				(Please Prov	ide Drawing)			
GROOVE DETAILS:	(Please Provide	Drawing)							
Type (Rectangular, Dovetail	, etc.):								
Outer Diameter:	_	Tolerance:		Depth:	Tolerance:				
Inner Diameter:		Tolerance:		- ' Finish (RMS)	- Type:		_		
inner blaniceer.		Toterance.		Finish Type: lathe (circular), endmill (r	- * '		_		
				(,,,				
BOLTING DETAILS:	(Please Provide	Prawing)			1				
Size:	_			Type / Grade:					
Number:	_Bolt Circle_			Tapped / Through:					
OTHER:									
Special coating / plating spe	ecification:								
Special quality / inspection	specifications:								
Other:									

MATERIALS

Information

COMMON MATERIAL AMS SPECIFICATIONS

		Tul	bing	
Material	Grade	Seamless	Welded	Sheet / Strip
Aluminum	1100	-	-	4001
Nickel	201	-	-	5553
St. Steel	304	5560	5565	5513
St. Steel	304L	-	-	5511
St. Steel	316	5573	-	5524
St. Steel	316L	-	-	5507
St. Steel	321	5570	5576	5510
Alloy	C276	-	-	5530
Alloy	400	4574	-	4544
Alloy	600	5580	-	5540
Alloy	625	5581	5581	5599
Alloy	718	5590	-	5596
Alloy	X-750	5582	-	5598
Titanium	Grd 2	-	-	4902
Waspaloy		-	-	5544

HEAT TREATMENTS

SOLUTION HEAT TREAT / ANNEAL

Stainless Steel (300 series): Anneal at 2000°F for 3 minutes

Nickel: Anneal at 1325°F for 90 minutes

Alloy X-750: Solution heat treat/anneal per AMS 5598 Section 3.4

Alloy 718: Solution heat treat/anneal per AMS 5596 Section 3.4

Other materials: Contact us at sales@technetics.com

PRECIPITATION HARDEN / AGE

Stainless Steel (300 Series): N/A

Nickel: N/A

Alloy X-750: Precipitation harden per AMS 5598 per Section 3.5.2

Alloy 718: Precipitation harden per AMS 5596 Section 3.5.2

Other materials: Contact us at sales@technetics.com

SPECIAL HEAT TREATMENTS

NACE: Temper per NACE MR0175 for control of stress corrosion cracking Custom 2-stage stainless steel anneal (316L VIMVAR stainless steel) Aluminum anneal (Alloys 6061 and 2024)

 ${\tt Contact} \ {\tt us} \ {\tt at} \ {\tt sales} @ {\tt technetics.com} \ {\tt for} \ {\tt more} \ {\tt information}.$

	Grade	UNS Description	Description	Density lb/in³ (g/cm³)	Tensile Strength ksi (Mpa)	Yield Strength at 0.2% offset ksi (MPa)	Elongation %	Hardness
	304	\$30400	Chromium-Nickel austenitic alloy. Used for a wide variety of home and commercial applications, this is one of the most familiar and most frequently used alloys in the stainless steel family.	0.285 (7.90)	75 (515)	30 (205)	30 (205)	92 Rb
Stainless Steels	316	S31600	Molybdenum-bearing austenitic stainless steel which is more resistant to general corrosion and pitting/crevice corrosion than the conventional chromium-nickel austenitic stainless steels. This alloy offers higher creep, stress-to-rupture and tensile strength at elevated temperatures.	0.290 (8.03)	75 (515)	30 (205)	30 (205)	95 Rb
	321	S32100	A stabilized stainless steel which offers an excellent resistance to intergranular corrosion following exposure to temperature in the chromium carbide precipitation range from 800-1500°F (430-820°C).	0.286 (7.92)	75 (515)	30 (205)	30 (205)	95 Rb
	Alloy 276	N10276	A nickel-molybdenum-chromium-iron-tunsten alloy which is among the most corrosion resistant of alloys currently available. Alloy 276 alloy is widely used in the severest environments.	0.321 (8.89)	120 (825)	60 (415)	55	90 Rb
	Alloy 400	N04400	A ductile nickel-copper alloy with resistance to a variety of corrosive conditions.	0.318 (8.80)	80 (550)	40 (275)	40	70 Rb
	Alloy 600	N06600	A non-precipitation hardenable, high-strength nickel- chromium alloy. Service temperatures up to 1000°F.	0.306 (8.47)	95 (655)	45 (310)	40	80 Rb
Nickel Alloys	Alloy 625	N06625	An austenitic nickel-base superalloy possessing excellent resistance to oxidation and corrosion over a broad range of corrosive conditions. It has outstanding strength and toughness at temperatures ranging from cryogenic to high temperature.	0.305 (8.44)	135 (930)	70 (485)	45	95 Rb
	Alloy 718	N07718	A precipitation hardenable, high-temperature nickel alloy that combines excellent corrosion resistance, high-strength and weldability. Resistant to post-weld cracking. Service temperatures up to 1200°F.	0.297 (8.23)	195 (1345) (Heat Treated)	170 (1170) (Heat Treated)	17 (Heat Treated)	43 Rc (Heat Treated)
	Alloy X-750	N07750	A precipitation hardenable, high-strength and high-temperature nickel alloy. Service temperatures up to 1100°F.	0.299 (8.28)	175 (1207) (Heat Treated)	115 (793) (Heat Treated)	20 (Heat Treated)	35 Rc (Heat Treated)
	Waspaloy	N07001	A precipitation hardenable nickel alloy with excellent high-temperature strength. Service temperatures up to 1350°F.	0296 (8.19)	80 (550)	40 (275)	40	70 Rb

	Grade	UNS Description	Description	Density Ib/in³ (g/cm³)	Tensile Strength ksi (Mpa)	Yield Strength at 0.2% offset ksi (MPa)	Elongation %	Hardness
	Nickel 201	N02201	Commercially pure wrought Nickel with similar properties to Alloy 200 but with a lower carbon content to prevent embrittlement by intergranular carbon at elevated temperatures.	0.321 (8.89)	58.6 (403)	14.9 (103)	50	75-100 HB
	Aluminum (Alloy 1100)	A91100	Commercially pure aluminum that contains a minimum of 99.0% aluminum. It has good formability and high resistance to corrosion.	0.098 (2.71)	13 (89.6)	5 (34.5)	45	23 HB
Other Materials	Silver (99.99 pure)		Commercially pure silver is very ductile, malleable, and capable of a high degree of polish.	0.379 (10.491)	20.3 (140)			25 HV
	Titanium	R50400	Commercially pure Titanium Grade 2 is the most commonly used and widely available grade of unalloyed titanium. The grade combines excellent corrosion resistance and weldability with good strength, ductility and formability.	0.163 (4.51)	50 (340) Min.	40 (280) Min.	22	80 Rb
	Tantalum		Superior resistance to all acids except hydrofluoric and hot sulfuric. Good for most aqueous salt solutions.	0.6 (16.6)	40 (276)	25 (172)	50	35 Rb
	Copper	C11000	Good to excellent corrosion resistance. Excellent hot and cold workability.	0.323 (8.94)	33 (227)	11 (76)	41	72 Rb

Typical room temperature mechanical properties.

The technical data contained herein is by way of example only and should not be relied on for any specific application.

APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279

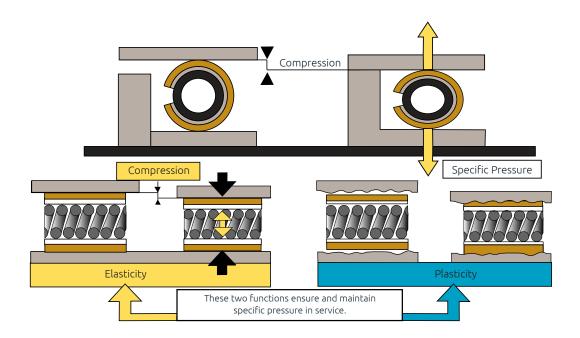
E-Mail: sales@technetics.com

COMPANY:				PHONE:			
CONTACT:				FAX:			
ADDRESS:				E-MAIL:			
				DATE:			
APPLICATION: (please	attach custo	mer drawin	g / sketch)				
Brief Description:	,				1		
Annual quantities:				RFQ Quantities:			
Is This a New Design?		o Yes	o No	Are Modifications Possible?		o Yes	o No
Drawing or Sketch Attached	?	o Yes	o No	What is the Seal Type?	,	o Shaped	o Circular
SERVICE CONDITION	S:						
Media:			1	Life Expectancy:			
Working Temperature:				Max/Proof Pressure:		@ Temp.	=
Working Pressure:				Max Temperature:		— @ Pressure	=
Pressure Direction: (Internal/External/Axial)				Target Sealing Level:	Helium:		Std.cc/sec
Pressure Cycles:				_	Flow Rate:		cc/minute
Temperature Cycles:			,		Other:	,	
FLANGE DETAILS:	(Please Pro	vide Drawin	g)				
Amount of Flange Movemer	nt in Service: (Ir	nches)	Radial	: Axia	l:	#Cycle	s:
Material:				Thicknes	s:		
o Groove / Counter Bore:	Р	lease list din	nensions in Gr	oove Details section			
o ANSI Raised Face	Size:		# Rating	: Face	Surface Finis	h:	(RMS)
o Flange(s) with Clamping S	System: (ISO,K	F, etc)		Standard:	_ Siz	e:	_
o Other:	Description:				(Please Prov	vide Drawing)	
GROOVE DETAILS:	(Please Provid	de Drawing)					
Type (Rectangular, Dovetail,	etc.):						
Outer Diameter:		Tolerance	<u>:</u>	Depth:	Tolerance:		
Inner Diameter:		Tolerance		Finish (RMS)	– Type:		_
				Finish Type: lathe (circular), endmill (other	_
BOLTING DETAILS:	/DI D	d- D:\		7,000,000,000,000			,
	(Please Provi	de Drawing)		T /C			
Size:	-			Type / Grade:			
Number:	Bolt Circle		_	Tapped / Through:			
OTHER:							
Special coating / plating spe	oification:						
Special quality / inspection s							
Other:	peomoations.						
Other.							
I							

TECHNICAL

Information

PERFORMANCE OF RESILIENT METAL SEALS

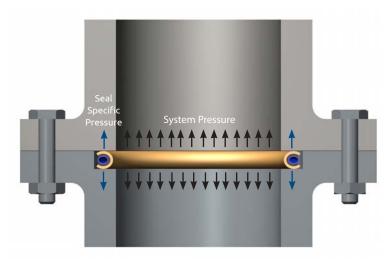

The performance of a resilient metal seal depends on two basic factors: elasticity and plasticity. The concept is similar to an elastomer seal such as Viton or Buna. The difference is that the elastomer compound serves both functions where a metal seal must use two components: a substrate and a soft outer layer.

ELASTICITY

Each seal has a resilient metal substrate in the form of a spring (HELICOFLEX®), tubing (O-FLEX™), or formed strip (E-FLEX™, C-FLEX™). This substrate serves to provide a specific load that is used to deform a soft outer layer. The substrate also has a certain amount of spring back that helps maintain constant contact force during service. This spring back is not necessarily designed to compensate for axial or radial flange separation. Instead, it ensures that the seal maintains enough contact force to properly seal a static joint in service.

PLASTICITY

The soft outer layer is usually a plating/coating or a wrapped jacket. This outer layer is designed to plastically deform based on the specific load generated by the substrate. As the soft outer layer is deformed, it flows into the flange/groove imperfections and creates a seal. The tightness of the seal will depend on the amount of specific load, the ductility of the outer layer and the groove surface finish. An ideal groove/ flange finish has machining marks that follow the circumference of the seal. Any radial marks or scratches may not be completely filled by the soft outer layer and could create a leak.


BOLTED JOINTS

BOLTED JOINTS

A bolted joint is an assembly that relies on each component to work properly. The performance and success of the bolted joint depends on the quality and design of each of these components. There are three major components of every bolted joint:

- 1. Flanges (Flange design / Groove dimensions & finish)
- 2. Bolts / Fasteners
- 3. Seal / Gasket

The above components cannot be designed mutually exclusive of each other. They must be considered together as a system during the design process. If any part of the bolted joint assembly does not perform properly, the joint as a whole will not perform to expectations and may leak.

BOLT LOAD AND TIGHTENING TORQUE

When using bolts to fasten the sealing joint the bolts must be of suitable strength and quantity to compress the seal and withstand the maximum hydrostatic load. Additionally, the bolts and flanges must be robust enough to prevent warpage, distortion or separation during service. All service factors must be considered such as thermal stresses, differential expansion, external loads and vibration.

BOLT LOAD ESTIMATES

The following equations may be used to estimate required bolt loads

NOTE: These estimates are offered as guidelines only. There are many other factors that the flange designer must consider such as: thermal cycling, vibration, cyclic fatigue, flange thickness, flange rotation, bolt stress relaxation, additional bolt preload, externally applied loads, etc. The customer is responsible for the flange design and for ensuring that the flanges, bolts and bolt loads are sufficient for the application. Please refer to Section VIII of the ASME Boiler and Pressure Vessel Code for code requirements.

Total Bolt Load ≥ Seal Seating Load + Hydrostatic Load + Safety Factor

SEAL SEATING LOAD

Total load required to compress the seal to optimal level. This information can be found for each seal type in the Performance Data sections of the catalog. It is referenced as $\rm Y_2$ and is given in pounds per circumferential inch (PCI).

Seal Seating Load = Seal Diameter $x \pi x Y$,

HYDROSTATIC LOAD

Load required to contain the system pressure.

Hydrostatic Load = Maximum system pressure $x (\pi/4) x (Seal Diameter)^2$

SAFETY FACTOR

This is a customer determined safety factor and must consider: system temperature effects, temperature cycling/spikes, pressure cycling/spikes, vibration, etc.

NOTE: A more detailed calculation is available for the HELICOFLEX® spring energized seals. Please see the HELICOFLEX® Seal product section.

EXAMPLE CALCULATION

Seal:

O-FLEXTM metal o-ring, Material = SS321 OD = 4.000in, CS = .125in, wall thickness = .020in $Y_2 = 1142$ lbs/in

Operating Conditions:

Pressure: 500 psi, Temperature: 70 F

Seating Load = 4.000in x π x 1142lbs/in = 14351 lbs Hydrostatic Load = 500 lbs/in² x $(\pi/4)$ x (4.000in)² = 6283 lbs

Total Bolt Load Estimate ≥ 14351 lbs + 6283 lbs + customer safety factor

NOTE: each application should be reviewed to determine if additional bolt preload may be required for proper bolt stretch.

BOLTED JOINTS

TIGHTENING TORQUE AND BOLT TENSION

The following equation may be used to create a rough estimate of the required torque: $T = K \times P \times D$

Where: T= tightening torque (in-lbs)

K*= dynamic coefficient of friction (i.e. minimum = .15

(dry-zinc plated))

P= total bolt load / number of bolts (lbf)

D= nominal bolt diameter (in)

(* Also referred to as the "nut factor" in some texts.)

It must be understood that every bolted joint is unique and the tightening torque should be determined for each application through experimentation. A properly tightened bolt is one that is stretched, thus acting like a very rigid spring pulling the mating surfaces together. As the bolt is tightened it begins to stretch and goes into a state of tension. There are many factors that affect how much tension occurs when a given amount of tightening torque is applied. These factors include bolt diameter, bolt grade (strength), and friction. Torque calculations can have significant errors based on these factors, especially friction. Best practice indicates that bolts should be properly lubricated and hardened washers used under the head and nut.

Where possible, it is recommended the fastener elongation, or stretch, be measured directly to ensure proper tension or preload. in the fastener.

NOTE: These estimates are offered as guidelines only. There are many other factors that the flange designer must consider such as: thermal cycling, vibration, cyclic fatigue, flange thickness, flange rotation, bolt stress relaxation, additional bolt preload, externally applied loads, etc. The customer is responsible for the flange design and for ensuring that the flanges, bolts and bolt loads are sufficient for the application. Please refer to Section VIII of the ASME Boiler and Pressure Vessel Code for code requirements.

TYPICAL BOLT / FASTENER INFORMATION

			Area at	30000	PSI Stress	45000	PSI Stress	60000 P	SI Stress
Size / Nominal Diameter	Nominal Diameter inches	Pitch (THD/IN)	Root of Thread sq. in.	Fastener Preload lbs	Torque Req'd K= .15 _{lbs-in}	Fastener Preload _{lbs}	Torque Req'd K= .15 lbs-in	Fastener Preload lbs	Torque Req'd K= .15 lbs-in
#6	0.138	32	0.008	225	5	338	7	450	9
#8	0.164	32	0.012	360	9	540	13	720	18
#10	0.190	24	0.015	435	12	653	19	870	25
#12	0.226	24	0.021	618	21	927	31	1236	42
1/4"	0.250	20	0.027	807	30	1211	45	1614	61
5/16"	0.313	18	0.045	1362	64	2043	96	2724	128
3/8"	0.375	16	0.068	2034	114	3051	172	4068	229
7/16"	0.438	14	0.093	2799	184	4199	276	5598	367
1/2"	0.500	13	0.126	3771	283	5657	424	7542	566
9/16"	0.563	12	0.162	4860	410	7290	615	9720	820
5/8"	0.625	11	0.202	6060	568	9090	852	12120	1136
3/4"	0.750	10	0.302	9060	1019	13590	1529	18120	2039
7/8"	0.875	9	0.419	12570	1650	18855	2475	25140	3300
1"	1.000	8	0.551	16530	2480	24795	3719	33060	4959
1-1/8"	1.125	8	0.728	21840	3686	32760	5528	43680	7371
1-1/4"	1.250	8	0.929	27870	5226	41805	7838	55740	10451
1-3/8"	1.375	8	1.155	34650	7147	51975	10720	69300	14293
1-1/2"	1.500	8	1.405	42150	9484	63225	14226	84300	18968
1-3/4"	1.750	8	1.980	59400	15593	89100	23389	118800	31185
2"	2.000	8	2.652	79560	23868	119340	35802	159120	47736

NOTES:

- 1. For fasteners larger than one inch, it is often customary to use a thread pitch of 8 in place of UNC thread pitch.
- 2. Contact us at sales@technetics.com for other sizes.
- 3. These values/estimates are offered as guidelines only. There are many other factors that the flange designer must consider such as: thermal cycling, vibration, cyclic fatigue, flange thickness, flange rotation, bolt stress relaxation, additional bolt preload, externally applied loads, etc. The customer is responsible for the flange design and for ensuring that the flanges, bolts and bolt loads are sufficient for the application. Please refer to Section VIII of the ASME Boiler and Pressure Vessel Code for code requirements.

INSTALLATION PROCEDURES

Seal installation is as important to the performance of the bolted joint as the flange, bolt and seal design. Following these simple steps will help ensure a successful installation.

PREPARATION

Verify the seal part number, required bolt loading and any special handling or installation instructions. Seals should remain in original protective packaging and preferably be stored in a controlled environment until time of installation. Finally, the packaging should be opened carefully to avoid scratching or damaging the seal. Be especially careful when using razor knives to open seal packaging or container.

INSPECTION

Inspect the groove and flanges to make sure the seal track area is free of burrs, debris and any radial marks or scratches. If necessary, clean the groove carefully with acetone or alcohol using a lint free cloth. Any radial scratches must be removed by careful polishing (polishing marks must follow seal circumference). Deeper scratches may require re-cutting the groove and/or re-facing the flange. Additionally, the sealing surface of the seal should be inspected for scratches and carefully handled to avoid dings, dents and radial marks or scratches.

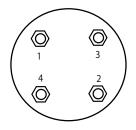
SEAL INSTALLATION

Carefully, place the seal into the groove or onto the flange. Gently bring the mating flange into place taking care not to scratch or damage the seal during all steps of the process.

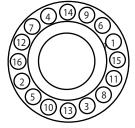
Note: Large seals (> 36") should be supported every three feet of circumference to prevent bending or crimping.

BOLTS / FASTENERS

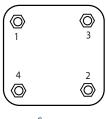
Bolts, bolt holes and nuts should be free of burrs, debris and galling. Bolts and nuts should be well lubricated with a process compatible lubricant. Hardened washers should be used when possible to further reduce friction. Note: for critical applications the installer may want to preload the bolts and release (without the seal) two or three times to "run in" the threads.

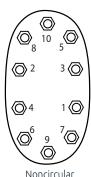

BOLT TIGHTENING

Bolts should be tightened using a star pattern (see diagram). Number the bolts with an indelible marker to make the process easier. First, tighten the nuts until "finger tight". Then, tighten bolts in one-third increments, according to the proper star bolting pattern. Make a final check pass at the final target torque value moving consecutively from bolt to bolt in a rotational order starting with bolt number one. It is recommended to re-torque 12-24 hours after initial installation, especially for high temperature applications.


REMOVING USED SEALS

Most metal seals are designed to make some light contact with the groove wall during compression and service. This helps to reinforce the seal against the system pressure. As a result, it may be difficult to remove the seal with finger force only, especially if the groove is very narrow. Ideally, a hard plastic pick can be used to remove the seal. For some seals, you may carefully drill a small hole in the top of the seal and use a small pick. In all cases, great care must be taken not to scratch the groove when using tools to remove the seal.


CORRECT BOLTING PATTERNS


Circular Four-Bolt

Circular Multibolt

Square Four Bolt

Noncircular Multibolt

an EnPro Industries company

JACKET-VS-PLATING/COATING

There are two types of soft outer layers that can be applied to metal seals to improve leakage performance. In both cases, the substrate must provide enough specific load to plastically deform the soft outer layer into the flange imperfections.

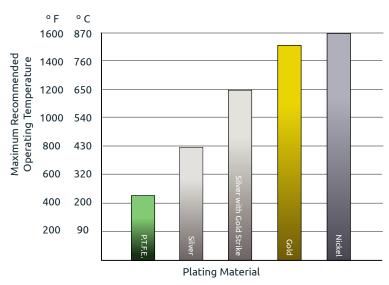
WRAPPED JACKET

The HELICOFLEX® Spring Energized Seal has a soft outer jacket that consists of a metal strip that has been wrapped or formed around the spring. Typically it is much thicker than platings or coatings. For example, a Silver jacket is approximately 0.30mm to 0.51mm thick where Silver plating is approximately 0.03mm to 0.05mm thick.

There are two primary advantages of the wrapped jacket. First, there is greater flexibility in material choice since the jacket is not limited by available plating technology. The HELICOFLEX® seal can be made with most metals available in strip or sheet form which helps match the seal material to temperature and corrosion requirements. Secondly, because the jacket is thicker, it typically performs better on rougher surface finishes. This is especially helpful for older vessels, such as aging nuclear reactor pressure vessels, where the grooves may have been polished or refinished.

The HELICOFLEX® seal spring is specifically designed for each jacket material to ensure plastic deformation is achieved.

PLATINGS/COATINGS

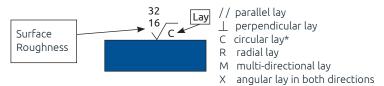

Platings and coatings are applied directly to the seal substrate. Typically these treatments are very thin and are usually 0.03/0.05mm thick. Therefore, they require a smooth groove/flange finish for optimal performance. Platings such as Silver and Nickel are applied by an electroplating process while coatings such as PTFE are typically applied by a spray or dip process. It is more difficult to match materials to temperature and corrosion requirements because platings and coatings are limited in choice by available deposition technologies.

It is important to note that each plating material requires a minimum amount of specific load to plastically deform. Below are some guidelines for Silver plated non-spring energized seals.

Cross sections: 1.60 mm to 3.99 mm = minimum load of 70 N per mm of circumference.

Cross sections: 4.78mm to 6.35mm = minimum load of 140 N per mm of circumference.

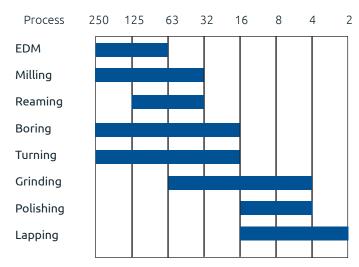
MAXIMUM RECOMMENDED OPERATING TEMPERATURES FOR PLATINGS AND COATINGS


Contact Us at sales@technetics.com for additional platings and coatings.

SURFACE FINISH

The leak rate of any joint is largely influenced by the condition of the surfaces in the joint. Leak paths are inherent in any sealing surface. Both the surface roughness of the seal and the surface roughness of the mating flange surfaces will affect sealing performance.

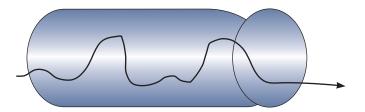
Surface roughness, also called surface texture or finish, is a trait of any surface. The design engineer usually specifies the required surface roughness of a flange sealing surface to ensure proper function of the flange in the joint.


Surface roughness is usually specified with a "check mark" symbol on a drawing as shown in the figure below. Surface roughness is typically indicated in RMS or microinches (µin) and is located on the left side of the symbol above the check mark. In the example below the roughness value is 32 RMS maximum and 16 RMS minimum. If a single value is specified, this value is interpreted as a maximum value.

^{*} Most metal seal applications require a circular or circumferential lay

The directional lay of a finished surface refers to the direction of the machining or polishing marks. The lay of a sealing surface is specified under the surface roughness symbol as shown in the figure above.

Approximate Roughness Average, RMS


UNDERSTANDING LEAKAGE

Leakage is the flow of a fluid through an orifice or permeation through a material and typically occurs as a result of a pressure differential. It is important to understand that all materials and mechanical joints permit some leakage over a period of time. This leakage may range from as much as several gallons or cubic feet per minute to as little as a bubble of air in several years.

HELICOFLEX® designs and manufactures a wide range of seals to satisfy a broad range of sealing requirements including leakage rate. Therefore, it is necessary to establish leakage rate criteria so that a suitable seal can be selected or designed. A specification that defines a "no leak" or "zero leakage" requirement is, in a technical sense, unrealistic and may lead to costly attempts at sealing. Leak tightness must be considered in relation to the medium being sealed, the normal operating conditions, and the sealing requirements regarding safety, contamination, and reliability.

GAS FLOW

Gas flow is used in characterizing leakage and performing leakage testing. Even at very low pressures, gases behave and flow like fluids. Gas flow is categorized into different types of flow modes as follows:

Path of a molecule through a leak path in turbulent flow.

Path of a molecule through a leak path in laminar flow.

Path of a molecule through a leak path in molecular flow.

VISCOSITY: WHY LIQUIDS AND GASES HAVE DIFFERENT LEAKAGE RATES

Viscosity is the internal friction of molecules of a liquid or gas and characterizes the resistance of a fluid to flow at a given temperature. High viscosity indicates a greater resistance to flow and low viscosity indicates a lesser resistance to flow. Therefore, fluids with a low viscosity have a higher probability of leaking or flowing at a higher rate.

Examples of typical fluid viscosities at room temperature (68°F, 20°C):

Fluid	Viscosity (in centipoises) at 68°F, 20°C
SAE 10 Grease	65
Water	0.95
Gasoline	0.6
Liquid Propane	0.11
Helium	0.019
Air	0.018
Hydrogen	0.009

From the above viscosity values it can be seen that at ambient temperature, water has a viscosity that is approximately 53 times greater than air. Therefore, at low pressure, the volume of water flow will be 53 times less than that of air.

Flow Mode	Flow Description	Leakage Rate (std cc/sec)
Turbulent Flow (Viscous Flow)	Flow through a passage that is typified as a large leak and at high pressure differentials. Leaks with turbulent flow are large and can be readily located and repaired.	Greater than 10 ⁻²
Laminar Flow (Viscous Flow)	Flow in a passage that is typified by slow movement of fluid in a relatively straight path along the centerline of a passage.	10 ⁻¹ to 10 ⁻⁶
Transitional Flow	Flow that occurs between the laminar and molecular flow regimes.	10 ⁻⁴ to 10 ⁻⁷
Molecular Flow	At molecular flow each molecule travels independently of other molecules. However, the general flow is in direction of the lower pressure.	Less than 10^{-7}

 $\underline{\text{Note}} : \text{Both turbulent flow} \text{ and laminar flow} \text{ are types} \text{ of viscous flow}.$

sales@technetics.com technetics.com

EQUIVALENT LEAKAGE RATES

Std cc/sec*	mbar-l/sec	Torr Liters/sec	Time for one cc to Leak	Time for one bubble** to leak
10 ⁻¹	1.01 x 10 ⁻¹	7.6 x 10 ⁻²	10 seconds	0.25 seconds
10-2	1.01 x 10 ⁻²	7.6 x 10 ⁻³	100 seconds	2.5 seconds
10 ⁻³	1.01 x 10 ⁻³	7.6 x 10 ⁻⁴	16.7 minutes	25 seconds
10-4	1.01 x 10 ⁻⁴	7.6 x 10 ⁻⁵	2.8 hours	4 minutes
10-5	1.01 x 10 ⁻⁵	7.6 x 10 ⁻⁶	28 hours	40 minutes
10-6	1.01 x 10 ⁻⁶	7.6 x 10 ⁻⁷	11.5 days	7 hours
10 ⁻⁷	1.01 x 10 ⁻⁷	7.6 x 10 ⁻⁸	3.8 months	3 days
10-8	1.01 x 10 ⁻⁸	7.6 x 10 ⁻⁹	3.2 years	1 month
10-9	1.01 x 10 ⁻⁹	7.6 x 10 ⁻¹⁰	32 years	9 months
10-10	1.01 x 10 ⁻¹⁰	7.6 x 10 ⁻¹¹	320 years	8 years
10-11	1.01 x 10 ⁻¹¹	7.6 x 10 ⁻¹²	3200 years	80 years

 ^{*} Std cc/sec = One cubic centimeter of gas flow per second at 14.7 psi of pressure and a temperature of 77°F

^{**} Bubble diameter is 3mm

Leak Legend	Approximate Leak Rates per meter of circumference	Actual leak rate in service will depend on the following:
Ultra-Helium	≤ 1 x 10 ⁻¹¹ std.cc/sec He	Seal Load: Wall Thickness or Spring Load
Helium	≤ 1 x 10 ⁻⁹ std.cc/sec He	Surface Finish: Seal and Cavity
Bubble	≤ 1 x 10 ⁻⁴ std.cc/sec He	Surface Treatment: Coating/Plating/Jacket Material
Low Bubble	≤ 25 cc/sec @ 50 psig Nitrogen per inch of diameter	

CONVERSION OF HELIUM LEAKAGE RATE TO LEAKAGE RATES OF OTHER GASES

To Convert to Leakage	Multiply Helium Leakage Rate by:				
Rate of:	Laminar Flow	Molecular Flow			
Argon	0.88	0.316			
Air	1.08	0.374			
Nitrogen	1.12	0.374			
Water vapor	2.09	0.469			
Hydrogen	2.23	1.410			

Sources:

- Leakage Testing Handbook, Prepared for Liquid Propulsion Section, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, California
- 2. Nondestructive Testing Handbook, Volume One, Leaktesting, American Society for Nondestructive Testing.
- 3. Leakage Testing Handbook, Revised Edition, July 1969, General Electric.
- 4. Fluid Flow in Small Passages, Mars Hablanian, J.W.Marr, Varian

73

COMMON CONVERSION TABLES

Length

To Obtain Multiply		Inch	micron	mm	cm	meter
inch	by	1	2.5400E+04	25.4000	2.5400	2.5400E-02
micron	by	3.9370E-05	1	1.0000E-03	1.0000E-04	1.000E-06
mm	by	3.9370E-02	1.0000E+03	1	1.0000E-01	1.000E-03
cm	by	3.9370E-01	1.0000E+04	10.0000	1	1.0000E-02
meter	by	39.3700	1.0000E+06	1.0000E+03	1.0000E+02	1

Pressure

To Ob	tain	bar	pascal	Mpascal	torr	psi	inches mercury 0°C	inches water 4°C
bar	by	1	1.0000E+05	1.0000E-01	7.5006E+02	14.5040	29.5300	4.0146E+02
pascal	by	1.0000E-05	1	1.0000E-06	7.5006E-03	1.4504E-04	2.9530E-04	4.0146E-03
Mpascal	by	10.0000	1.0000E+06	1	7.5006E+03	1.4504E+02	2.9530E+02	4.0146E+03
torr	by	1.3332E-03	1.3332E+02	1.3332E-04	1	1.9337E-02	3.9370E-02	5.3524E-01
psi	by	6.8948E-02	6.8948E+03	6.8948E-03	51.7150	1	2.0360	27.6800
inches mercury 0°C	by	3.3863E-02	3.3863E+03	3.3863E-03	25.4000	4.9115E-01	1	13.5950
inches water 4°C	by	2.4909E-03	2.4909E+02	2.4909E-04	1.8683	3.6127E-02	7.3556E-02	1

Vacuum Leak Rate

Multiply	To Obtain	torr.l.s ⁻¹	atm.cm ³ .s ⁻¹	mbar.l.s ⁻¹	Pa.m ³ .s ⁻¹
torr.l.s ⁻¹	by	1	1.316	1.333	1.333E-01
atm.cm³.s ⁻¹	by	7.600E-01	1	1.013	1.013E-01
mbar.l.s ⁻¹	by	7.501E-01	9.862E-01	1	1.000E-01
Pa.m³.s ⁻¹	by	7.501	9.869	10.000	1

Mass

To Obtain Multiply		Kgf	N	lbf
Kgf	by	1	9.8067	2.2046
N	by	1.0197E-01	1	2.2481E-01
lbf	by	4.5359E-01	4.4482	1

Units of Load/Unit Length

Multiply	by	To Obtain		
N.mm ⁻¹	5.71	lb.in ⁻¹		
lb.in ⁻¹	1.75E-01	N.mm ⁻¹		

Torque


To Obtain Multiply		lb.in	Kg.m	N.m	
lb.in	by	1	1.1521E-02	1.1298E-01	
Kg.m	by	86.7962	1	9.8067	
N.m	by	8.8507	1.0197E-01	1	

Temperature

Fahrenheit	F° = (9/5)C+32
Celsius	C° = 5/9 (F-32)
Kelvin	K = C+273

NOTE: The technical data contained herein is by way of example and should not be relied on for any specific application.

APPLICATIONS DATA SHEET

Tel: 800-233-1722 Fax: 803-783-4279

E-Mail: sales@technetics.com

COMPANY:				PHONE:			
ONTACT:			FAX:				
ADDRESS:				E-MAIL:			
				DATE:			
APPLICATION: (please	e attach custom	er drawing	/ sketch)				
Brief Description:							
							_
Annual quantities:				RFQ Quantities:			
Is This a New Design?	0,	Yes o	o No	Are Modifications Possible?		o Yes	o No
Drawing or Sketch Attached	l? o`	Yes o	o No	What is the Seal Type?		o Shaped	o Circular
SERVICE CONDITION	IS:						
Media:				Life Expectancy:			
Working Temperature:				Max/Proof Pressure:		@ Temp. =	
Working Pressure:				Max Temperature:	@ Pressure =		=
Pressure Direction: (Internal/External/Axial)				Target Sealing Level:	Helium:		Std.cc/sec
Pressure Cycles:				_	Flow Rate:		cc/minute
Temperature Cycles:					Other:		
FLANGE DETAILS:	(Please Provi	de Drawing))				
Amount of Flange Moveme	nt in Service: (Inche	es)	Radial	: Axial	l:	#Cycles	s:
Material:				Thickness	;:		
o Groove / Counter Bore:	Ple	ase list dime	ensions in Gr	oove Details section			
o ANSI Raised Face	Size:		# Rating	: Face :	Surface Finish	1:	_(RMS)
o Flange(s) with Clamping	System: (ISO,KF, etc)		Standard:	Size:		_	
o Other:	Description:				(Please Prov	ide Drawing)	
GROOVE DETAILS:	(Please Provide	Drawing)					
Type (Rectangular, Dovetail	, etc.):						
Outer Diameter:		Tolerance:		Depth:	Tolerance:		
Inner Diameter:		Tolerance:		Finish (RMS)	– Type:		_
inner bidineter.		Toterance.		Finish Type: lathe (circular), endmill (r	- * '	other	_
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,		
BOLTING DETAILS:	(Please Provide	Drawing)					
Size:	_			Type / Grade:			
Number:	_Bolt Circle		Tapped / Through:				
					ı.'		
OTHER:							
Special coating / plating spe	ecification:						
Special quality / inspection	specifications:						
Other:							
l							

THE TECHNICAL DATA CONTAINED HEREIN IS BY WAY OF EXAMPLE AND SHOULD NOT BE RELIED ON FOR ANY SPECIFIC APPLICATION. TECHNETICS GROUP WILL BE PLEASED TO PROVIDE SPECIFIC TECHNICAL DATA OR SPECIFICATIONS WITH RESPECT TO ANY CUSTOMER'S PARTICULAR APPLICATIONS. USE OF THE TECHNICAL DATA OR SPECIFICATIONS CONTAINED HEREIN WITHOUT THE EXPRESS WRITTEN APPROVAL OF TECHNETICS GROUP IS AT USER'S RISK AND TECHNETICS GROUP EXPRESSLY DISCLAIMS RESPONSIBILITY FOR SUCH USE AND THE SITUATIONS WHICH MAY RESULT THEREFROM.

TECHNETICS GROUP MAKES NO WARRANTY, EXPRESS OR IMPLIED, THAT UTILIZATION OF THE TECHNOLOGY OR PRODUCTS DISCLOSED HEREIN WILL NOT INFRINGE ANY INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES.

TECHNETICS GROUP IS CONSTANTLY INVOLVED IN ENGINEERING AND DEVELOPMENT. ACCORDINGLY, TECHNETICS GROUP RESERVES THE RIGHT TO MODIFY, AT ANY TIME, THE TECHNOLOGY AND PRODUCT SPECIFICATIONS CONTAINED HEREIN.

ALL TECHNICAL DATA, SPECIFICATIONS AND OTHER INFORMATION CONTAINED HEREIN IS DEEMED TO BE THE PROPRIETARY INTELLECTUAL PROPERTY OF TECHNETICS GROUP. NO REPRODUCTION, COPY OR USE THEREOF MAY BE MADE WITHOUT THE EXPRESS WRITTEN CONSENT OF TECHNETICS GROUP.

For more information on how Technetics Group affects your critical markets, visit technetics.com.

ASIA

Blk 203, #05-52 Woodlands Avenue 9 Woodlands Spectrum 2, 738956 Singapore

Phone: +65 6759 2335 Fax: +65 6759 7319

FRANCE

90, rue de la Roche du Geai CS 52913 42029 Saint Etienne cedex 1 FRANCE

Phone: +33 (0) 4 77 43 51 00 Fax: +33 (0) 4 77 43 51 51

49 Avenue Charles de Gaulle Z.I. Survaure 42607 Montbrison cedex FRANCE

Phone: +33 (0) 4 77 96 79 80

GERMANY

Falkenweg 1 41468 Neuss Germany

Phone: 0800-627-0151

UK

Acan Way, Coventry Road Narborough, Leicester LE19 2FT UK

Phone: +44 (0) 1162 727411 Fax: +44 (0) 1162 727412

USA

2791 The Boulevard Columbia, SC 29209 USA

Phone: +1-803-783-1880 Fax: +1-803-783-4279

305 Fentress Boulevard Daytona Beach, FL 32114 USA

Phone: +1-386-253-0628 Fax: +1-386-257-0122

1700 E. International Speedway Blvd DeLand, FL 32724 USA

Phone: +1-386-736-7373 Fax: +1-386-738-4533 7319 West Wilson Avenue Harwood Heights, IL 60706 USA

Phone: +1-708-887-6080 Fax: +1-708-887-8854

1600 Industry Road Hatfield, PA 19440 USA

Phone: +1-800-618-4701 Fax: +1-215-855-3570

10633 W Little York, Bldg 3, Suite 300 Houston, TX 77041 USA

Phone: +1-713-983-4201 Fax: +1-713-466-3721

10 Old Webster Road Oxford, MA 01540 USA

Phone: +1-508-987-5900

831 Bransten Road San Carlos, CA 94070 USA

Phone: +1-650-594-9797 Fax: +1-650-594-9620

