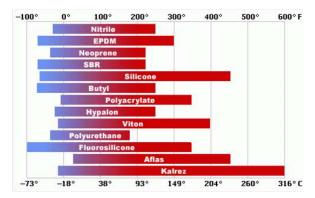
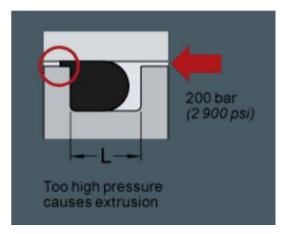


FAILURE IS NOT AN OPTION STATIC METAL SEALS FOR SPACE APPLICATIONS

PRESENTATION NOTES


AGENDA

- Why you need a metal seal
- How metal seals work
- · What is a metal seal
- Groove design considerations
- Application conditions
- · Leak Rate discussion
- Question & Answer Session


WHY METAL SEALS

Three main elements affecting elastomers

- Temperature
- Pressure
- Environment

https://websealinc.com/technical-info/o-ring-temperature-guide/

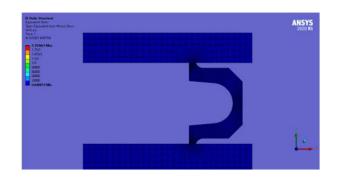
https://www.skf.com/group/products/industrial-seals/hydraulic-seals/o-rings-and-back-up-rings

ELASTOMER/METAL COMPARISON

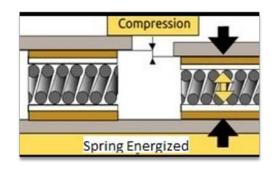
Temperature			Pressure		
Condition	Elastomer	Metal	Condition	Elastomer	Metal
Cryogenic [<-100°F]	*	/	UHV	*	/
High Temperature [>600°F]	*	/	High Pressure [2900 PSI+]	*	/

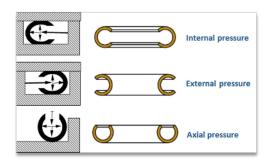
ENVIRONMENT CONSIDERATIONS

Radiation

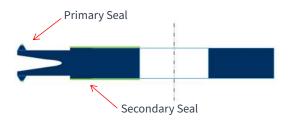

Media

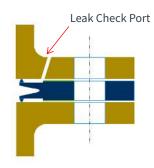
Gas


- Permeation
 - Butyl O-Ring ~4E-5 scc/s
 - SS 304 Metallic Seal ~5E-10 scc/s

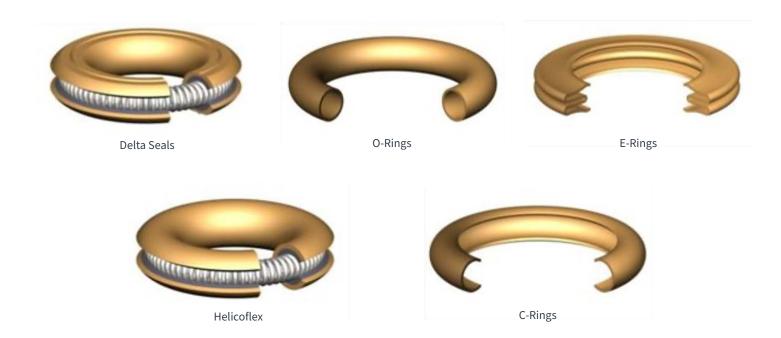

HOW A METAL SEAL WORKS

- Contact Pressure
 - Contact area "seal track"
 - Seating load of seal
 - · Surface finish
- Plastic Deformation of Sealing Material
 - Plating
 - Coatings
 - Jackets


ENERGIZATION OF SEALS



REDUNDANT SEALING



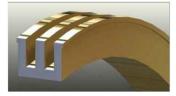
TYPES OF METAL SEALS

- Formed
- Machined

FORMED METAL SEALS

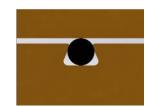
MACHINED METAL SEALS

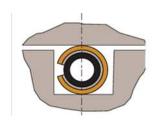
Sizes from .250" to over 48" Inner Diameter

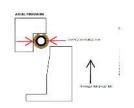


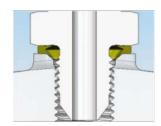
K-Port Seals

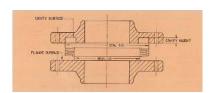
Naflex Seals

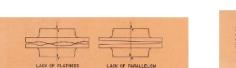


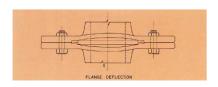

Ultratech Seals


STANDARD GLAND GEOMETRIES


- Face Seal (Flange/Face Groove)
- Axial Seal (Shaft Seal Gland)
- Dovetail Groove
- Threaded Port (AS5202)
- Fluid Fitting







FLANGE/CAVITY DESIGN

- Pressure Direction
 - Groove Walls
- Joint Connection
 - Higher load to compress with a metallic seal
- Surface Finish
 - Most important item to ensure a good seal
- Flatness and Parallelism
- Flange Deflection

SURFACE FINISH

- · Sealing Material Dependent
 - General surface finish callout
 - PTFE coated seals can tolerate a rougher surface than metal plated
- · Circular Lay

APPLICATION DETAILS

Application Data Sheet

- Temperature (Operating and Max/Proof)
- Pressure (Operating and Max/Proof)
- Leak-Rate Performance
- Media
- Life Expectancy
- Hardware Geometry

LEAK RATE DISCUSSION

EQUIVALENT LEAKAGE RATES

Std cc/sec*	mbar-I/sec	Torr Liters/sec	Time to leak one cubic centimeter	Time to leak one bubble**
10 ⁻¹	1.01 x 10 ⁻¹	7.6 x 10 ⁻²	10 seconds	.25 seconds
10-2	1.01 x 10 ⁻²	7.6 x 10 ⁻³	100 seconds	2.5 seconds
10 ⁻³	1.01 x 10 ⁻³	7.6 x 10 ⁻⁴	16.7 minutes	25 seconds
10 ⁻⁴	1.01 x 10 ⁻⁴	7.6 x 10 ⁻⁵	2.8 hours	4 minutes
10 ⁻⁵	1.01 x 10 ⁻⁵	7.6 x 10 ⁻⁶	28 hours	40 minutes
10 ⁻⁶	1.01 x 10 ⁻⁶	7.6 x 10 ⁻⁷	11.5 days	7 hours
10 ⁻⁷	1.01 x 10 ⁻⁷	7.6 x 10 ⁻⁸	3.8 months	3 days
10 ⁻⁸	1.01 x 10 ⁻⁸	7.6 x 10 ⁻⁹	3.2 years	1 month
10 ⁻⁹	1.01 x 10 ⁻⁹	7.6 x 10 ⁻¹⁰	32 years	9 months
10 ⁻¹⁰	1.01 x 10 ⁻¹⁰	7.6 x 10 ⁻¹¹	320 years	8 years
10 ⁻¹¹	1.01 x 10 ⁻¹¹	7.6 x 10 ⁻¹²	3200 years	80 years

Std cc/sec = One cubic centimeter of gas flow per second at 14.7 psi of pressure and a temperature of 77°F

LEAK RATE EXAMPLE

A fluid system with a total volume of 5 ft³ and 15 joints is pressurized with Methane to 500 psia at room temperature. It must remain above 390 psia after 24 months in space with a nominal operating temperature of -40°F.

- Determine Acceptable Mass loss (Δm)
- Determine equivalent Standard Volume loss (ΔVs)
- Acceptable System Leak Rate Q_{System}
- Acceptable Joint Leak Rate Q loint
- Equivalent Helium Leak Rate Q_{Test}
- Apply MOS as required

$$\Delta m = \frac{P_1 \cdot V}{R_s \cdot T_1} - \frac{P_2 \cdot V}{R_s \cdot T_2} = \frac{.142 \ m^3}{518.279} \frac{J}{kgK} \left(\frac{3.45}{293} - \frac{2.69}{233}\right) \frac{MPa}{K} = .06 \ kg = .14 \ lbm$$

$$\Delta V_S = \frac{\Delta m \cdot R_S \cdot T_{STP}}{P_{STP}} = \frac{.06kg \cdot 518.277 \frac{J}{kgK} * 273K}{.10 \, MPa} = .088scm = 3.10scf$$

$$Q_{System} = \frac{\Delta V_S}{Life} = \frac{.088scm}{24 Months} = 1.39x10^{-3}sccs C_2 H_4$$

$$Q_{Joint} = \frac{Q_{System}}{\# Joints} = \frac{1.39x10^{-3}sccs}{15} = 9.26x10^{-5}sccs C_2H_4$$

$$Q_{Test} = \frac{Q_{Joint}}{MOS} \cdot \left(\frac{v_{Methane}}{v_{Helium}}\right) = \frac{9.26 \times 10^{-5} sccs \ C_2 H_4}{2} \cdot \left(\frac{.0109}{.198}\right) = 5.10 \times 10^{-6} \ sccs \ GHe$$

^{**} Bubble diameter is 3mm